Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Deep Space Insights: Machine Learning Revolutionizing Astrophysical Discoveries

Samya Dutta, Prithwineel Paul, K. Ganguly, S. Pal, K.P. Ghatak and V. Vanchurin
EPJ Web of Conferences 325 01012 (2025)
https://doi.org/10.1051/epjconf/202532501012

Phenomenological gravitational waveforms for core-collapse supernovae

P. Cerdá-Durán, M. López, A. Favali, I. Di Palma, M. Drago and F. Ricci
Physical Review D 111 (8) (2025)
https://doi.org/10.1103/PhysRevD.111.083022

Ameliorating transient noise bursts in gravitational-wave searches for intermediate-mass black holes

Melissa Lopez, Giada Caneva Santoro, Ana Martins, Stefano Schmidt, Jonno Schoppink, Wouter van Straalen, Collin Capano and Sarah Caudill
Physical Review D 111 (10) (2025)
https://doi.org/10.1103/PhysRevD.111.103020

Extracting non-Gaussian features in gravitational wave observation data using self-supervised learning

Yu-Chiung Lin and Albert K. H. Kong
Physical Review D 111 (6) (2025)
https://doi.org/10.1103/PhysRevD.111.063520

Determining the core-collapse supernova explosion mechanism with current and future gravitational-wave observatories

Jade Powell, Alberto Iess, Miquel Llorens-Monteagudo, Martin Obergaulinger, Bernhard Müller, Alejandro Torres-Forné, Elena Cuoco and José A. Font
Physical Review D 109 (6) (2024)
https://doi.org/10.1103/PhysRevD.109.063019

21cmlstm: A Fast Memory-based Emulator of the Global 21 cm Signal with Unprecedented Accuracy

J. Dorigo Jones, S. M. Bahauddin, D. Rapetti, J. Mirocha and J. O. Burns
The Astrophysical Journal 977 (1) 19 (2024)
https://doi.org/10.3847/1538-4357/ad8b20

Evaluating machine learning models for supernova gravitational wave signal classification

Y Sultan Abylkairov, Matthew C Edwards, Daniil Orel, Ayan Mitra, Bekdaulet Shukirgaliyev and Ernazar Abdikamalov
Machine Learning: Science and Technology 5 (4) 045077 (2024)
https://doi.org/10.1088/2632-2153/ada33a

Deep-learning classification and parameter inference of rotational core-collapse supernovae

Solange Nunes, Gabriel Escrig, Osvaldo G. Freitas, José A. Font, Tiago Fernandes, Antonio Onofre and Alejandro Torres-Forné
Physical Review D 110 (6) (2024)
https://doi.org/10.1103/PhysRevD.110.064037

Photometric redshift estimation for CSST survey with LSTM neural networks

Zhijian Luo, Yicheng Li, Junhao Lu, Zhu Chen, Liping Fu, Shaohua Zhang, Hubing Xiao, Wei Du, Yan Gong, Chenggang Shu, Wenwen Ma, Xianmin Meng, Xingchen Zhou and Zuhui Fan
Monthly Notices of the Royal Astronomical Society 535 (2) 1844 (2024)
https://doi.org/10.1093/mnras/stae2446

Comparative study of 1D and 2D convolutional neural network models with attribution analysis for gravitational wave detection from compact binary coalescences

Seiya Sasaoka, Naoki Koyama, Diego Dominguez, Yusuke Sakai, Kentaro Somiya, Yuto Omae and Hirotaka Takahashi
Physical Review D 109 (4) (2024)
https://doi.org/10.1103/PhysRevD.109.043011

Parameter estimation of protoneutron stars from gravitational wave signals using the Hilbert-Huang transform

Seiya Sasaoka, Yusuke Sakai, Diego Dominguez, Kentaro Somiya, Kazuki Sakai, Ken-ichi Oohara, Marco Meyer-Conde and Hirotaka Takahashi
Physical Review D 110 (10) (2024)
https://doi.org/10.1103/PhysRevD.110.104020

Visualizing convolutional neural network for classifying gravitational waves from core-collapse supernovae

Seiya Sasaoka, Naoki Koyama, Diego Dominguez, et al.
Physical Review D 108 (12) (2023)
https://doi.org/10.1103/PhysRevD.108.123033

Urban Water Supply Forecasting Based on CNN-LSTM-AM Spatiotemporal Deep Learning Model

Yaxin Zhao, Yuebing Xu, Jiadong Ye, Xiaowu Zhang and Zuqiang Long
IEEE Access 11 144204 (2023)
https://doi.org/10.1109/ACCESS.2023.3345029

Using a neural network approach to accelerate disequilibrium chemistry calculations in exoplanet atmospheres

Julius L A M Hendrix, Amy J Louca and Yamila Miguel
Monthly Notices of the Royal Astronomical Society 524 (1) 643 (2023)
https://doi.org/10.1093/mnras/stad1763