The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Extracting Signal Electron Trajectories in the COMET Phase-I Cylindrical Drift Chamber Using Deep Learning
Fumihiro Kaneko, Yoshitaka Kuno, Joe Sato, Ikuya Sato, Dorian Pieters and Chen Wu Progress of Theoretical and Experimental Physics 2025(5) (2025) https://doi.org/10.1093/ptep/ptaf048
A multi-stage machine learning-based method to estimate wind parameters from Hα lines of massive stars
Felipe Ortiz, Raquel Pezoa, Michel Curé, Ignacio Araya, Roberto O.J. Venero, Catalina Arcos, Pedro Escárate, Natalia Machuca and Alejandra Christen Astronomy and Computing 52 100941 (2025) https://doi.org/10.1016/j.ascom.2025.100941
Deep learning approach for identification of H ii regions during reionization in 21-cm observations – III. Image recovery
Michele Bianco, Sambit K Giri, Rohit Sharma, Tianyue Chen, Shreyam Parth Krishna, Chris Finlay, Viraj Nistane, Philipp Denzel, Massimo De Santis and Hatem Ghorbel Monthly Notices of the Royal Astronomical Society 541(1) 234 (2025) https://doi.org/10.1093/mnras/staf973
Galaxy–Galaxy Strong Lensing with U-Net (GGSL-UNet). I. Extracting Two-dimensional Information from Multiband Images in Ground and Space Observations
Fucheng Zhong, Ruibiao Luo, Nicola R. Napolitano, Crescenzo Tortora, Rui Li, Xincheng Zhu, Valerio Busillo, L. V. E. Koopmans and Giuseppe Longo The Astrophysical Journal Supplement Series 277(1) 12 (2025) https://doi.org/10.3847/1538-4365/ada609
Bellybutton: accessible and customizable deep-learning image segmentation
Sam Dillavou, Jesse M. Hanlan, Anthony T. Chieco, Hongyi Xiao, Sage Fulco, Kevin T. Turner and Douglas J. Durian Scientific Reports 14(1) (2024) https://doi.org/10.1038/s41598-024-63906-y
Automation of finding strong gravitational lenses in the Kilo Degree Survey with U – DenseLens (DenseLens + Segmentation)
Bharath Chowdhary N, Léon V E Koopmans, Edwin A Valentijn, Gijs Verdoes Kleijn, Jelte T A de Jong, Nicola Napolitano, Rui Li, Crescenzo Tortora, Valerio Busillo and Yue Dong Monthly Notices of the Royal Astronomical Society 533(2) 1426 (2024) https://doi.org/10.1093/mnras/stae1882
Surveying image segmentation approaches in astronomy
Strong Gravitational Lensing as a Probe of Dark Matter
S. Vegetti, S. Birrer, G. Despali, C. D. Fassnacht, D. Gilman, Y. Hezaveh, L. Perreault Levasseur, J. P. McKean, D. M. Powell, C. M. O’Riordan and G. Vernardos Space Science Reviews 220(5) (2024) https://doi.org/10.1007/s11214-024-01087-w
Strong Lensing by Galaxies
A. J. Shajib, G. Vernardos, T. E. Collett, V. Motta, D. Sluse, L. L. R. Williams, P. Saha, S. Birrer, C. Spiniello and T. Treu Space Science Reviews 220(8) (2024) https://doi.org/10.1007/s11214-024-01105-x
DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data
Pranath Reddy, Michael W Toomey, Hanna Parul and Sergei Gleyzer Machine Learning: Science and Technology 5(3) 035076 (2024) https://doi.org/10.1088/2632-2153/ad76f8
Kuan-Wei Huang, Geoff Chih-Fan Chen, Po-Wen Chang, Sheng-Chieh Lin, ChiaJung Hsu, Vishal Thengane and Joshua Yao-Yu Lin 13801 143 (2023) https://doi.org/10.1007/978-3-031-25056-9_10
Anisotropic strong lensing as a probe of dark matter self-interactions
Birendra Dhanasingham, Francis-Yan Cyr-Racine, Charlie Mace, Annika H G Peter and Andrew Benson Monthly Notices of the Royal Astronomical Society 526(4) 5455 (2023) https://doi.org/10.1093/mnras/stad3099
Subhalo effective density slope measurements from HST strong lensing data with neural likelihood-ratio estimation
Gemma Zhang, Atınç Çağan Şengül and Cora Dvorkin Monthly Notices of the Royal Astronomical Society 527(2) 4183 (2023) https://doi.org/10.1093/mnras/stad3521
Machine learning approach to the background reduction in singly charged cosmic-ray isotope measurements with AMS-02
E.F. Bueno, F. Barão and M. Vecchi Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1056 168644 (2023) https://doi.org/10.1016/j.nima.2023.168644
From Images to Dark Matter: End-to-end Inference of Substructure from Hundreds of Strong Gravitational Lenses
Sebastian Wagner-Carena, Jelle Aalbers, Simon Birrer, Ethan O. Nadler, Elise Darragh-Ford, Philip J. Marshall and Risa H. Wechsler The Astrophysical Journal 942(2) 75 (2023) https://doi.org/10.3847/1538-4357/aca525
The effect of the perturber population on subhalo measurements in strong gravitational lenses
Adam Coogan, Noemi Anau Montel, Konstantin Karchev, Meiert W Grootes, Francesco Nattino and Christoph Weniger Monthly Notices of the Royal Astronomical Society 527(1) 66 (2023) https://doi.org/10.1093/mnras/stad2925
Domain Adaptation for Simulation-based Dark Matter Searches with Strong Gravitational Lensing
Stephon Alexander, Sergei Gleyzer, Hanna Parul, Pranath Reddy, Marcos Tidball and Michael W. Toomey The Astrophysical Journal 954(1) 28 (2023) https://doi.org/10.3847/1538-4357/acdfc7
Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses
Inferring subhalo effective density slopes from strong lensing observations with neural likelihood-ratio estimation
Gemma Zhang, Siddharth Mishra-Sharma and Cora Dvorkin Monthly Notices of the Royal Astronomical Society 517(3) 4317 (2022) https://doi.org/10.1093/mnras/stac3014
Probing dark matter with strong gravitational lensing through an effective density slope