Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Extracting Signal Electron Trajectories in the COMET Phase-I Cylindrical Drift Chamber Using Deep Learning

Fumihiro Kaneko, Yoshitaka Kuno, Joe Sato, Ikuya Sato, Dorian Pieters and Chen Wu
Progress of Theoretical and Experimental Physics 2025 (5) (2025)
https://doi.org/10.1093/ptep/ptaf048

A multi-stage machine learning-based method to estimate wind parameters from Hα lines of massive stars

Felipe Ortiz, Raquel Pezoa, Michel Curé, Ignacio Araya, Roberto O.J. Venero, Catalina Arcos, Pedro Escárate, Natalia Machuca and Alejandra Christen
Astronomy and Computing 52 100941 (2025)
https://doi.org/10.1016/j.ascom.2025.100941

Deep learning approach for identification of H ii regions during reionization in 21-cm observations – III. Image recovery

Michele Bianco, Sambit K Giri, Rohit Sharma, Tianyue Chen, Shreyam Parth Krishna, Chris Finlay, Viraj Nistane, Philipp Denzel, Massimo De Santis and Hatem Ghorbel
Monthly Notices of the Royal Astronomical Society 541 (1) 234 (2025)
https://doi.org/10.1093/mnras/staf973

Galaxy–Galaxy Strong Lensing with U-Net (GGSL-UNet). I. Extracting Two-dimensional Information from Multiband Images in Ground and Space Observations

Fucheng Zhong, Ruibiao Luo, Nicola R. Napolitano, Crescenzo Tortora, Rui Li, Xincheng Zhu, Valerio Busillo, L. V. E. Koopmans and Giuseppe Longo
The Astrophysical Journal Supplement Series 277 (1) 12 (2025)
https://doi.org/10.3847/1538-4365/ada609

Bellybutton: accessible and customizable deep-learning image segmentation

Sam Dillavou, Jesse M. Hanlan, Anthony T. Chieco, Hongyi Xiao, Sage Fulco, Kevin T. Turner and Douglas J. Durian
Scientific Reports 14 (1) (2024)
https://doi.org/10.1038/s41598-024-63906-y

Automation of finding strong gravitational lenses in the Kilo Degree Survey with U – DenseLens (DenseLens  + Segmentation)

Bharath Chowdhary N, Léon V E Koopmans, Edwin A Valentijn, Gijs Verdoes Kleijn, Jelte T A de Jong, Nicola Napolitano, Rui Li, Crescenzo Tortora, Valerio Busillo and Yue Dong
Monthly Notices of the Royal Astronomical Society 533 (2) 1426 (2024)
https://doi.org/10.1093/mnras/stae1882

Strong Gravitational Lensing as a Probe of Dark Matter

S. Vegetti, S. Birrer, G. Despali, C. D. Fassnacht, D. Gilman, Y. Hezaveh, L. Perreault Levasseur, J. P. McKean, D. M. Powell, C. M. O’Riordan and G. Vernardos
Space Science Reviews 220 (5) (2024)
https://doi.org/10.1007/s11214-024-01087-w

Strong Lensing by Galaxies

A. J. Shajib, G. Vernardos, T. E. Collett, V. Motta, D. Sluse, L. L. R. Williams, P. Saha, S. Birrer, C. Spiniello and T. Treu
Space Science Reviews 220 (8) (2024)
https://doi.org/10.1007/s11214-024-01105-x

DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data

Pranath Reddy, Michael W Toomey, Hanna Parul and Sergei Gleyzer
Machine Learning: Science and Technology 5 (3) 035076 (2024)
https://doi.org/10.1088/2632-2153/ad76f8

Anisotropic strong lensing as a probe of dark matter self-interactions

Birendra Dhanasingham, Francis-Yan Cyr-Racine, Charlie Mace, Annika H G Peter and Andrew Benson
Monthly Notices of the Royal Astronomical Society 526 (4) 5455 (2023)
https://doi.org/10.1093/mnras/stad3099

Subhalo effective density slope measurements from HST strong lensing data with neural likelihood-ratio estimation

Gemma Zhang, Atınç Çağan Şengül and Cora Dvorkin
Monthly Notices of the Royal Astronomical Society 527 (2) 4183 (2023)
https://doi.org/10.1093/mnras/stad3521

Machine learning approach to the background reduction in singly charged cosmic-ray isotope measurements with AMS-02

E.F. Bueno, F. Barão and M. Vecchi
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1056 168644 (2023)
https://doi.org/10.1016/j.nima.2023.168644

From Images to Dark Matter: End-to-end Inference of Substructure from Hundreds of Strong Gravitational Lenses

Sebastian Wagner-Carena, Jelle Aalbers, Simon Birrer, Ethan O. Nadler, Elise Darragh-Ford, Philip J. Marshall and Risa H. Wechsler
The Astrophysical Journal 942 (2) 75 (2023)
https://doi.org/10.3847/1538-4357/aca525

The effect of the perturber population on subhalo measurements in strong gravitational lenses

Adam Coogan, Noemi Anau Montel, Konstantin Karchev, Meiert W Grootes, Francesco Nattino and Christoph Weniger
Monthly Notices of the Royal Astronomical Society 527 (1) 66 (2023)
https://doi.org/10.1093/mnras/stad2925

Domain Adaptation for Simulation-based Dark Matter Searches with Strong Gravitational Lensing

Stephon Alexander, Sergei Gleyzer, Hanna Parul, Pranath Reddy, Marcos Tidball and Michael W. Toomey
The Astrophysical Journal 954 (1) 28 (2023)
https://doi.org/10.3847/1538-4357/acdfc7

Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses

L. Biggio, G. Vernardos, A. Galan, A. Peel and F. Courbin
Astronomy & Astrophysics 675 A125 (2023)
https://doi.org/10.1051/0004-6361/202245126

Inferring subhalo effective density slopes from strong lensing observations with neural likelihood-ratio estimation

Gemma Zhang, Siddharth Mishra-Sharma and Cora Dvorkin
Monthly Notices of the Royal Astronomical Society 517 (3) 4317 (2022)
https://doi.org/10.1093/mnras/stac3014

Probing dark matter with strong gravitational lensing through an effective density slope

Atinç Çagan Şengül and Cora Dvorkin
Monthly Notices of the Royal Astronomical Society 516 (1) 336 (2022)
https://doi.org/10.1093/mnras/stac2256

Extracting the Subhalo Mass Function from Strong Lens Images with Image Segmentation

Bryan Ostdiek, Ana Diaz Rivero and Cora Dvorkin
The Astrophysical Journal 927 (1) 83 (2022)
https://doi.org/10.3847/1538-4357/ac2d8d

Using wavelets to capture deviations from smoothness in galaxy-scale strong lenses

A. Galan, G. Vernardos, A. Peel, F. Courbin and J.-L. Starck
Astronomy & Astrophysics 668 A155 (2022)
https://doi.org/10.1051/0004-6361/202244464