Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Structure and Dynamics of the Sun’s Interior Revealed by the Helioseismic and Magnetic Imager

Alexander G. Kosovichev, Sarbani Basu, Yuto Bekki, Juan Camilo Buitrago-Casas, Theodosios Chatzistergos, Ruizhu Chen, Jørgen Christensen-Dalsgaard, Alina Donea, Bernhard Fleck, Damien Fournier, Rafael A. García, Alexander V. Getling, Laurent Gizon, Douglas O. Gough, Shravan Hanasoge, Chris S. Hanson, Shea A. Hess Webber, J. Todd Hoeksema, Rachel Howe, Kiran Jain, Spiridon Kasapis, Samarth G. Kashyap, Irina N. Kitiashvili, Rudolf Komm, Sylvain G. Korzennik, et al.
Solar Physics 300 (5) (2025)
https://doi.org/10.1007/s11207-025-02480-6

FArSide Trained Active Region Recognition (FASTARR): A Machine Learning Approach

Amr Hamada, Mitchell Creelman, Kiran Jain and Charles Lindsey
The Astrophysical Journal Supplement Series 278 (2) 53 (2025)
https://doi.org/10.3847/1538-4365/add893

The return of FarNet-II: Generation of solar far-side magnetograms from helioseismic data

E. G. Broock, A. Asensio Ramos and T. Felipe
Astronomy & Astrophysics 692 A182 (2024)
https://doi.org/10.1051/0004-6361/202451625

Dampening long-period doppler shift oscillations using deep machine learning techniques in the solar network and internetwork

Rayhaneh Sadeghi and Ehsan Tavabi
Advances in Space Research 74 (7) 3448 (2024)
https://doi.org/10.1016/j.asr.2024.06.034

Imaging individual active regions on the Sun’s far side with improved helioseismic holography

Dan Yang, Laurent Gizon and Hélène Barucq
Astronomy & Astrophysics 669 A89 (2023)
https://doi.org/10.1051/0004-6361/202244923

A possible converter to denoise the images of exoplanet candidates through machine learning techniques

Pattana Chintarungruangchai, Ing-Guey Jiang, Jun Hashimoto, Yu Komatsu and Mihoko Konishi
New Astronomy 100 101997 (2023)
https://doi.org/10.1016/j.newast.2022.101997

Inferring Maps of the Sun’s Far-side Unsigned Magnetic Flux from Far-side Helioseismic Images Using Machine Learning Techniques

Ruizhu Chen, Junwei Zhao, Shea Hess Webber, Yang Liu, J. Todd Hoeksema and Marc L. DeRosa
The Astrophysical Journal 941 (2) 197 (2022)
https://doi.org/10.3847/1538-4357/aca333

Exploring the Sun’s upper atmosphere with neural networks: Reversed patterns and the hot wall effect

H. Socas-Navarro and A. Asensio Ramos
Astronomy & Astrophysics 652 A78 (2021)
https://doi.org/10.1051/0004-6361/202140424

Accurately constraining velocity information from spectral imaging observations using machine learning techniques

Conor D. MacBride, David B. Jess, Samuel D. T. Grant, et al.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379 (2190) (2021)
https://doi.org/10.1098/rsta.2020.0171

Selection of Three (Extreme)Ultraviolet Channels for Solar Satellite Missions by Deep Learning

Daye Lim, Yong-Jae Moon, Eunsu Park and Jin-Yi Lee
The Astrophysical Journal Letters 915 (2) L31 (2021)
https://doi.org/10.3847/2041-8213/ac0d54