The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
I. Kovačić, M. Baes, A. Nersesian, N. Andreadis, L. Nemani, Abdurro’uf, L. Bisigello, M. Bolzonella, C. Tortora, A. van der Wel, S. Cavuoti, C. J. Conselice, A. Enia, L. K. Hunt, P. Iglesias-Navarro, E. Iodice, J. H. Knapen, F. R. Marleau, O. Müller, R. F. Peletier, J. Román, R. Ragusa, P. Salucci, T. Saifollahi, M. Scodeggio, et al. Astronomy & Astrophysics 695 A284 (2025) https://doi.org/10.1051/0004-6361/202453111
Prediction of Star Formation Rates Using an Artificial Neural Network
Ashraf Ayubinia, Jong-Hak Woo, Fatemeh Hafezianzadeh, Taehwan Kim and Changseok Kim The Astrophysical Journal 980(2) 177 (2025) https://doi.org/10.3847/1538-4357/ada366
The Properties of an Edge-On Low Surface Brightness Galaxies Sample
Tian-Wen Cao, Zi-Jian Li, Pei-Bin Chen, Venu M. Kalari, Cheng Cheng, Gaspar Galaz, Hong Wu and Junfeng Wang Universe 10(11) 432 (2024) https://doi.org/10.3390/universe10110432
A machine learning approach to estimate mid-infrared fluxes from WISE data
A Machine-learning Approach to Predict Missing Flux Densities in Multiband Galaxy Surveys
Nima Chartab, Bahram Mobasher, Asantha R. Cooray, Shoubaneh Hemmati, Zahra Sattari, Henry C. Ferguson, David B. Sanders, John R. Weaver, Daniel K. Stern, Henry J. McCracken, Daniel C. Masters, Sune Toft, Peter L. Capak, Iary Davidzon, Mark E. Dickinson, Jason Rhodes, Andrea Moneti, Olivier Ilbert, Lukas Zalesky, Conor J. R. McPartland, István Szapudi, Anton M. Koekemoer, Harry I. Teplitz and Mauro Giavalisco The Astrophysical Journal 942(2) 91 (2023) https://doi.org/10.3847/1538-4357/acacf5
Starduster: A Multiwavelength SED Model Based on Radiative Transfer Simulations and Deep Learning
Search for Galaxy Cluster Candidates in the Cosmic Microwave Background Maps of the Planck Space Mission Using a Convolutional Neural Network Based on the Method of Tracing the Sunyaev–Zeldovich Effect
O. V. Verkhodanov, A. P. Topchieva, A. D. Oronovskaya, S. A. Bazrov and D. A. Shorin Astrophysical Bulletin 76(2) 123 (2021) https://doi.org/10.1134/S1990341321020103
Predicting far-infrared maps of galaxies via machine learning techniques
Fitting spectral energy distributions of FMOS-COSMOS emission-line galaxies atz∼ 1.6: Star formation rates, dust attenuation, and [OIII]λ5007 emission-line luminosities
Probing the spectral shape of dust emission with the DustPedia galaxy sample
Angelos Nersesian, Wouter Dobbels, Emmanuel M Xilouris, et al. Monthly Notices of the Royal Astronomical Society 506(3) 3986 (2021) https://doi.org/10.1093/mnras/stab1984
Classification of star/galaxy/QSO and star spectral types from LAMOST data release 5 with machine learning approaches
Reproducing the Universe: a comparison between the EAGLE simulations and the nearby DustPedia galaxy sample
Emmanuel M Xilouris, Sébastien Viaene, Angelos Nersesian, et al. Monthly Notices of the Royal Astronomical Society 494(2) 2823 (2020) https://doi.org/10.1093/mnras/staa857