Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Euclid preparation

I. Kovačić, M. Baes, A. Nersesian, N. Andreadis, L. Nemani, Abdurro’uf, L. Bisigello, M. Bolzonella, C. Tortora, A. van der Wel, S. Cavuoti, C. J. Conselice, A. Enia, L. K. Hunt, P. Iglesias-Navarro, E. Iodice, J. H. Knapen, F. R. Marleau, O. Müller, R. F. Peletier, J. Román, R. Ragusa, P. Salucci, T. Saifollahi, M. Scodeggio, et al.
Astronomy & Astrophysics 695 A284 (2025)
https://doi.org/10.1051/0004-6361/202453111

Prediction of Star Formation Rates Using an Artificial Neural Network

Ashraf Ayubinia, Jong-Hak Woo, Fatemeh Hafezianzadeh, Taehwan Kim and Changseok Kim
The Astrophysical Journal 980 (2) 177 (2025)
https://doi.org/10.3847/1538-4357/ada366

The Properties of an Edge-On Low Surface Brightness Galaxies Sample

Tian-Wen Cao, Zi-Jian Li, Pei-Bin Chen, Venu M. Kalari, Cheng Cheng, Gaspar Galaz, Hong Wu and Junfeng Wang
Universe 10 (11) 432 (2024)
https://doi.org/10.3390/universe10110432

A machine learning approach to estimate mid-infrared fluxes from WISE data

Nuria Fonseca-Bonilla, Luis Cerdán, Alberto Noriega-Crespo and Amaya Moro-Martín
Astronomy & Astrophysics 691 A271 (2024)
https://doi.org/10.1051/0004-6361/202450274

A Machine-learning Approach to Predict Missing Flux Densities in Multiband Galaxy Surveys

Nima Chartab, Bahram Mobasher, Asantha R. Cooray, Shoubaneh Hemmati, Zahra Sattari, Henry C. Ferguson, David B. Sanders, John R. Weaver, Daniel K. Stern, Henry J. McCracken, Daniel C. Masters, Sune Toft, Peter L. Capak, Iary Davidzon, Mark E. Dickinson, Jason Rhodes, Andrea Moneti, Olivier Ilbert, Lukas Zalesky, Conor J. R. McPartland, István Szapudi, Anton M. Koekemoer, Harry I. Teplitz and Mauro Giavalisco
The Astrophysical Journal 942 (2) 91 (2023)
https://doi.org/10.3847/1538-4357/acacf5

Starduster: A Multiwavelength SED Model Based on Radiative Transfer Simulations and Deep Learning

Yisheng Qiu and Xi Kang
The Astrophysical Journal 930 (1) 66 (2022)
https://doi.org/10.3847/1538-4357/ac63a1

Search for Galaxy Cluster Candidates in the Cosmic Microwave Background Maps of the Planck Space Mission Using a Convolutional Neural Network Based on the Method of Tracing the Sunyaev–Zeldovich Effect

O. V. Verkhodanov, A. P. Topchieva, A. D. Oronovskaya, S. A. Bazrov and D. A. Shorin
Astrophysical Bulletin 76 (2) 123 (2021)
https://doi.org/10.1134/S1990341321020103

Fitting spectral energy distributions of FMOS-COSMOS emission-line galaxies atz∼ 1.6: Star formation rates, dust attenuation, and [OIII]λ5007 emission-line luminosities

J. A. Villa-Vélez, V. Buat, P. Theulé, M. Boquien and D. Burgarella
Astronomy & Astrophysics 654 A153 (2021)
https://doi.org/10.1051/0004-6361/202140890

Probing the spectral shape of dust emission with the DustPedia galaxy sample

Angelos Nersesian, Wouter Dobbels, Emmanuel M Xilouris, et al.
Monthly Notices of the Royal Astronomical Society 506 (3) 3986 (2021)
https://doi.org/10.1093/mnras/stab1984

Classification of star/galaxy/QSO and star spectral types from LAMOST data release 5 with machine learning approaches

Wen Xiao-Qing and Yang Jin-Meng
Chinese Journal of Physics 69 303 (2021)
https://doi.org/10.1016/j.cjph.2020.03.008

Reproducing the Universe: a comparison between the EAGLE simulations and the nearby DustPedia galaxy sample

Emmanuel M Xilouris, Sébastien Viaene, Angelos Nersesian, et al.
Monthly Notices of the Royal Astronomical Society 494 (2) 2823 (2020)
https://doi.org/10.1093/mnras/staa857