Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Predicting the Spectroscopic Features of Galaxies by Applying Manifold Learning on Their Broadband Colors: Proof of Concept and Potential Applications for Euclid, Roman, and Rubin LSST

Marziye Jafariyazani, Daniel Masters, Andreas L. Faisst, Harry I. Teplitz and Olivier Ilbert
The Astrophysical Journal 967 (1) 60 (2024)
https://doi.org/10.3847/1538-4357/ad38b8

Applying machine learning to Galactic Archaeology: how well can we recover the origin of stars in Milky Way-like galaxies?

Andrea Sante, Andreea S Font, Sandra Ortega-Martorell, Ivan Olier and Ian G McCarthy
Monthly Notices of the Royal Astronomical Society 531 (4) 4363 (2024)
https://doi.org/10.1093/mnras/stae1398

Model independent estimation of expansion rate from low and high redshift SNIa

Mohammad Hadi Mohammadi and Ahmad Mehrabi
International Journal of Modern Physics D 33 (13) (2024)
https://doi.org/10.1142/S0218271824500512

Machine Learning–based Search of High-redshift Quasars

Guangping 广平 Ye 叶, Huanian 华年 Zhang 张 and Qingwen 庆文 Wu 吴
The Astrophysical Journal Supplement Series 275 (1) 19 (2024)
https://doi.org/10.3847/1538-4365/ad79ee

Machine learning-based photometric classification of galaxies, quasars, emission-line galaxies, and stars

Fatemeh Zahra Zeraatgari, Fatemeh Hafezianzadeh, Yanxia Zhang, Liquan Mei, Ashraf Ayubinia, Amin Mosallanezhad and Jingyi Zhang
Monthly Notices of the Royal Astronomical Society 527 (3) 4677 (2023)
https://doi.org/10.1093/mnras/stad3436

Depthwise convolutional neural network for multiband automatic quasars classification in ATLAS

Astrid E San-Martín-Jiménez, Karim Pichara, Luis Felipe Barrientos, Felipe Rojas and Cristobal Moya-Sierralta
Monthly Notices of the Royal Astronomical Society 524 (4) 5080 (2023)
https://doi.org/10.1093/mnras/stad1859

Photometric classification of quasars from ALHAMBRA survey using random forest

Benjamín Arroquia-Cuadros, Néstor Sánchez, Vicent Gómez, et al.
Astronomy & Astrophysics 673 A48 (2023)
https://doi.org/10.1051/0004-6361/202245531

Discovery of strongly lensed quasars in the Ultraviolet Near Infrared Optical Northern Survey (UNIONS)

J. H. H. Chan, C. Lemon, F. Courbin, et al.
Astronomy & Astrophysics 659 A140 (2022)
https://doi.org/10.1051/0004-6361/202142389

Inferring galaxy dark halo properties from visible matter with machine learning

Rodrigo von Marttens, Luciano Casarini, Nicola R Napolitano, et al.
Monthly Notices of the Royal Astronomical Society 516 (3) 3924 (2022)
https://doi.org/10.1093/mnras/stac2449

The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data

Abdurro’uf, Katherine Accetta, Conny Aerts, Víctor Silva Aguirre, Romina Ahumada, Nikhil Ajgaonkar, N. Filiz Ak, Shadab Alam, Carlos Allende Prieto, Andrés Almeida, Friedrich Anders, Scott F. Anderson, Brett H. Andrews, Borja Anguiano, Erik Aquino-Ortíz, Alfonso Aragón-Salamanca, Maria Argudo-Fernández, Metin Ata, Marie Aubert, Vladimir Avila-Reese, Carles Badenes, Rodolfo H. Barbá, Kat Barger, Jorge K. Barrera-Ballesteros, Rachael L. Beaton, et al.
The Astrophysical Journal Supplement Series 259 (2) 35 (2022)
https://doi.org/10.3847/1538-4365/ac4414

The Quasar Luminosity Function at z ∼ 5 via Deep Learning and Bayesian Information Criterion

Suhyun Shin, Myungshin Im and Yongjung Kim
The Astrophysical Journal 937 (1) 32 (2022)
https://doi.org/10.3847/1538-4357/ac854b

Using Multivariate Imputation by Chained Equations to Predict Redshifts of Active Galactic Nuclei

Spencer James Gibson, Aditya Narendra, Maria Giovanna Dainotti, et al.
Frontiers in Astronomy and Space Sciences 9 (2022)
https://doi.org/10.3389/fspas.2022.836215

Random Forests as a Viable Method to Select and Discover High-redshift Quasars

Lukas Wenzl, Jan-Torge Schindler, Xiaohui Fan, Irham Taufik Andika, Eduardo Bañados, Roberto Decarli, Knud Jahnke, Chiara Mazzucchelli, Masafusa Onoue, Bram P. Venemans, Fabian Walter and Jinyi Yang
The Astronomical Journal 162 (2) 72 (2021)
https://doi.org/10.3847/1538-3881/ac0254

Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

S. J. Nakoneczny, M. Bilicki, A. Pollo, et al.
Astronomy & Astrophysics 649 A81 (2021)
https://doi.org/10.1051/0004-6361/202039684

Identifying RR Lyrae Variable Stars in Six Years of the Dark Energy Survey

K. M. Stringer, A. Drlica-Wagner, L. Macri, C. E. Martínez-Vázquez, A. K. Vivas, P. Ferguson, A. B. Pace, A. R. Walker, E. Neilsen, K. Tavangar, W. Wester, T. M. C. Abbott, M. Aguena, S. Allam, D. Bacon, K. Bechtol, E. Bertin, D. Brooks, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, M. Costanzi, M. Crocce, L. N. da Costa, et al.
The Astrophysical Journal 911 (2) 109 (2021)
https://doi.org/10.3847/1538-4357/abe873

Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers

N. J. Klingler, A. Lien, S. R. Oates, J. A. Kennea, P. A. Evans, A. Tohuvavohu, B. Zhang, K. L. Page, S. B. Cenko, S. D. Barthelmy, A. P. Beardmore, M. G. Bernardini, A. A. Breeveld, P. J. Brown, D. N. Burrows, S. Campana, G. Cusumano, A. D’Aì, P. D’Avanzo, V. D’Elia, M. de Pasquale, S. W. K. Emery, J. Garcia, P. Giommi, C. Gronwall, et al.
The Astrophysical Journal 907 (2) 97 (2021)
https://doi.org/10.3847/1538-4357/abd2c3

Deep learning applications based on SDSS photometric data: detection and classification of sources

Zhendong He, Bo Qiu, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 508 (2) 2039 (2021)
https://doi.org/10.1093/mnras/stab2243

Predicting the Redshift of γ-Ray-loud AGNs Using Supervised Machine Learning

Maria Giovanna Dainotti, Malgorzata Bogdan, Aditya Narendra, Spencer James Gibson, Blazej Miasojedow, Ioannis Liodakis, Agnieszka Pollo, Trevor Nelson, Kamil Wozniak, Zooey Nguyen and Johan Larrson
The Astrophysical Journal 920 (2) 118 (2021)
https://doi.org/10.3847/1538-4357/ac1748

Intelligent Astrophysics

Maurizio D’Addona, Giuseppe Riccio, Stefano Cavuoti, Crescenzo Tortora and Massimo Brescia
Emergence, Complexity and Computation, Intelligent Astrophysics 39 225 (2021)
https://doi.org/10.1007/978-3-030-65867-0_10

Surveying the reach and maturity of machine learning and artificial intelligence in astronomy

Christopher J. Fluke and Colin Jacobs
WIREs Data Mining and Knowledge Discovery 10 (2) (2020)
https://doi.org/10.1002/widm.1349

The optical luminosity function of LOFAR radio-selected quasars at 1.4 ≤ z ≤ 5.0 in the NDWFS-Boötes field

E. Retana-Montenegro and H. J. A. Röttgering
Astronomy & Astrophysics 636 A12 (2020)
https://doi.org/10.1051/0004-6361/201936577

Identifying galaxies, quasars, and stars with machine learning: A new catalogue of classifications for 111 million SDSS sources without spectra

A. O. Clarke, A. M. M. Scaife, R. Greenhalgh and V. Griguta
Astronomy & Astrophysics 639 A84 (2020)
https://doi.org/10.1051/0004-6361/201936770

The fourth data release of the Kilo-Degree Survey: ugri imaging and nine-band optical-IR photometry over 1000 square degrees

K. Kuijken, C. Heymans, A. Dvornik, et al.
Astronomy & Astrophysics 625 A2 (2019)
https://doi.org/10.1051/0004-6361/201834918

Astroinformatics-based search for globular clusters in the Fornax Deep Survey

G Angora, M Brescia, S Cavuoti, et al.
Monthly Notices of the Royal Astronomical Society 490 (3) 4080 (2019)
https://doi.org/10.1093/mnras/stz2801

A classifier to detect elusive astronomical objects through photometry

Rama Krishna Sai S Gorthi, S K Ghosh, S Vig and Bhavana D.
Monthly Notices of the Royal Astronomical Society 488 (2) 2263 (2019)
https://doi.org/10.1093/mnras/stz1823

Catalogues of active galactic nuclei from Gaia and unWISE data

Yiping Shu, Sergey E Koposov, N Wyn Evans, et al.
Monthly Notices of the Royal Astronomical Society 489 (4) 4741 (2019)
https://doi.org/10.1093/mnras/stz2487