Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Analytical noise bias correction for precise weak lensing shear inference

Xiangchong Li and Rachel Mandelbaum
Monthly Notices of the Royal Astronomical Society 536 (4) 3663 (2025)
https://doi.org/10.1093/mnras/stae2764

Euclid preparation

D. Scognamiglio, T. Schrabback, M. Tewes, B. Gillis, H. Hoekstra, E. M. Huff, O. Marggraf, T. Kitching, R. Massey, I. Tereno, C. S. Carvalho, A. Robertson, G. Congedo, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, M. Baldi, S. Bardelli, P. Battaglia, C. Bodendorf, D. Bonino, E. Branchini, et al.
Astronomy & Astrophysics 694 A262 (2025)
https://doi.org/10.1051/0004-6361/202451587

Accurate shear estimation with fourth-order moments

Andy Park, Xiangchong Li and Rachel Mandelbaum
Monthly Notices of the Royal Astronomical Society 537 (1) 507 (2025)
https://doi.org/10.1093/mnras/staf053

Euclid preparation

G. Congedo, L. Miller, A. N. Taylor, N. Cross, C. A. J. Duncan, T. Kitching, N. Martinet, S. Matthew, T. Schrabback, M. Tewes, N. Welikala, N. Aghanim, A. Amara, S. Andreon, N. Auricchio, M. Baldi, S. Bardelli, R. Bender, C. Bodendorf, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, et al.
Astronomy & Astrophysics 691 A319 (2024)
https://doi.org/10.1051/0004-6361/202450617

Euclid: Improving the efficiency of weak lensing shear bias calibration

H. Jansen, M. Tewes, T. Schrabback, N. Aghanim, A. Amara, S. Andreon, N. Auricchio, M. Baldi, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, V. F. Cardone, J. Carretero, S. Casas, M. Castellano, S. Cavuoti, A. Cimatti, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, et al.
Astronomy & Astrophysics 683 A240 (2024)
https://doi.org/10.1051/0004-6361/202347833

A differentiable perturbation-based weak lensing shear estimator

Xiangchong Li, Rachel Mandelbaum, Mike Jarvis, Yin Li, Andy Park and Tianqing Zhang
Monthly Notices of the Royal Astronomical Society 527 (4) 10388 (2023)
https://doi.org/10.1093/mnras/stad3895

Weak gravitational lensing shear estimation with metacalibration for the Roman High-Latitude Imaging Survey

Masaya Yamamoto, M A Troxel, Mike Jarvis, Rachel Mandelbaum, Christopher Hirata, Heyang Long, Ami Choi and Tianqing Zhang
Monthly Notices of the Royal Astronomical Society 519 (3) 4241 (2023)
https://doi.org/10.1093/mnras/stac2644

Weak gravitational lensing shear measurement with FPFS: analytical mitigation of noise bias and selection bias

Xiangchong Li, Yin Li and Richard Massey
Monthly Notices of the Royal Astronomical Society 511 (4) 4850 (2022)
https://doi.org/10.1093/mnras/stac342

The three-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey

Xiangchong Li, Hironao Miyatake, Wentao Luo, Surhud More, Masamune Oguri, Takashi Hamana, Rachel Mandelbaum, Masato Shirasaki, Masahiro Takada, Robert Armstrong, Arun Kannawadi, Satoshi Takita, Satoshi Miyazaki, Atsushi J Nishizawa, Andres A Plazas Malagon, Michael A Strauss, Masayuki Tanaka and Naoki Yoshida
Publications of the Astronomical Society of Japan 74 (2) 421 (2022)
https://doi.org/10.1093/pasj/psac006

Propagating spatially varying multiplicative shear bias to cosmological parameter estimation for stage-IV weak-lensing surveys

Casey Cragg, Christopher A J Duncan, Lance Miller and David Alonso
Monthly Notices of the Royal Astronomical Society 518 (4) 4909 (2022)
https://doi.org/10.1093/mnras/stac3324

Synthetic galaxy clusters and observations based on Dark Energy Survey Year 3 Data

T N Varga, D Gruen, S Seitz, et al.
Monthly Notices of the Royal Astronomical Society 509 (4) 4865 (2021)
https://doi.org/10.1093/mnras/stab3269

The point spread function reconstruction – II. The smooth PCA

Lin Nie, Guoliang Li, John R Peterson and Chengliang Wei
Monthly Notices of the Royal Astronomical Society 503 (3) 4436 (2021)
https://doi.org/10.1093/mnras/stab733

Dark Energy Survey Y3 results: blending shear and redshift biases in image simulations

N MacCrann, M R Becker, J McCullough, et al.
Monthly Notices of the Royal Astronomical Society 509 (3) 3371 (2021)
https://doi.org/10.1093/mnras/stab2870

Mitigating the effects of undersampling in weak lensing shear estimation with metacalibration

Arun Kannawadi, Erik Rosenberg and Henk Hoekstra
Monthly Notices of the Royal Astronomical Society 502 (3) 4048 (2021)
https://doi.org/10.1093/mnras/stab211

Mitigating Shear-dependent Object Detection Biases with Metacalibration

Erin S. Sheldon, Matthew R. Becker, Niall MacCrann and Michael Jarvis
The Astrophysical Journal 902 (2) 138 (2020)
https://doi.org/10.3847/1538-4357/abb595

Constraining the masses of high-redshift clusters with weak lensing: Revised shape calibration testing for the impact of stronger shears and increased blending

B. Hernández-Martín, T. Schrabback, H. Hoekstra, et al.
Astronomy & Astrophysics 640 A117 (2020)
https://doi.org/10.1051/0004-6361/202037844

Testing Shear Recovery with Field Distortion

Jun Zhang, Fuyu Dong, Hekun Li, Xiangchong Li, Yingke Li, Dezi Liu, Wentao Luo, Liping Fu, Guoliang Li and Zuhui Fan
The Astrophysical Journal 875 (1) 48 (2019)
https://doi.org/10.3847/1538-4357/ab1080

Galaxy shape measurement with convolutional neural networks

Dezső Ribli, László Dobos and István Csabai
Monthly Notices of the Royal Astronomical Society 489 (4) 4847 (2019)
https://doi.org/10.1093/mnras/stz2374

Towards emulating cosmic shear data: revisiting the calibration of the shear measurements for the Kilo-Degree Survey

Arun Kannawadi, Henk Hoekstra, Lance Miller, et al.
Astronomy & Astrophysics 624 A92 (2019)
https://doi.org/10.1051/0004-6361/201834819