Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Hybrid-z: Enhancing the Kilo-Degree Survey bright galaxy sample photometric redshifts with deep learning

Anjitha John William, Priyanka Jalan, Maciej Bilicki, Wojciech A. Hellwing, Hareesh Thuruthipilly and Szymon J. Nakoneczny
Astronomy & Astrophysics 698 A276 (2025)
https://doi.org/10.1051/0004-6361/202453576

Improving Photometric Redshift Estimation for CSST Mock Catalog Using SED Templates Calibrated with Perturbation Algorithm

Yicheng Li, Liping Fu, Zhu Chen, Zhijian Luo, Wei Du, Yan Gong, Xianmin Meng, Junhao Lu, Zhirui Tang, Pengfei Chen, Shaohua Zhang, Chenggang Shu, Xingchen Zhou and Zuhui Fan
Research in Astronomy and Astrophysics 25 (5) 055021 (2025)
https://doi.org/10.1088/1674-4527/adcc7e

Parameter measurement based on photometric images

Jiang-Hui Cai, Na Li, Hai-Feng Yang, Li-Li Wang, Ai-Yu Zheng, Jing Hao, Xujun Zhao and Yaling Xun
Astronomy & Astrophysics 694 A271 (2025)
https://doi.org/10.1051/0004-6361/202452813

Euclid preparation

I. Kovačić, M. Baes, A. Nersesian, N. Andreadis, L. Nemani, Abdurro’uf, L. Bisigello, M. Bolzonella, C. Tortora, A. van der Wel, S. Cavuoti, C. J. Conselice, A. Enia, L. K. Hunt, P. Iglesias-Navarro, E. Iodice, J. H. Knapen, F. R. Marleau, O. Müller, R. F. Peletier, J. Román, R. Ragusa, P. Salucci, T. Saifollahi, M. Scodeggio, et al.
Astronomy & Astrophysics 695 A284 (2025)
https://doi.org/10.1051/0004-6361/202453111

Performance evaluation of efficient interpretable CNN-transformer model for redshift prediction

Snigdha Sen, Ambuj Kumar Pandit, Pavan Chakraborty and Krishna Pratap Singh
Signal, Image and Video Processing 19 (4) (2025)
https://doi.org/10.1007/s11760-025-03855-9

Machine Learning–based Photometric Redshifts for Galaxies in the North Ecliptic Pole Wide Field: Catalogs of Spectroscopic and Photometric Redshifts

Taewan Kim, Jubee Sohn, Ho Seong Hwang, Simon C.-C. Ho, Denis Burgarella, Tomotsugu Goto, Tetsuya Hashimoto, Woong-Seob Jeong, Seong Jin Kim, Matthew A. Malkan, Takamitsu Miyaji, Nagisa Oi, Hyunjin Shim, Hyunmi Song, Narae Hwang and Byeong-Gon Park
The Astrophysical Journal Supplement Series 277 (2) 41 (2025)
https://doi.org/10.3847/1538-4365/adb42a

Deep Drug Synergy Prediction Network Using Modified Triangular Mutation-Based Differential Evolution

Dilbag Singh, Ahmad Ali Alzubi, Manjit Kaur, Vijay Kumar and Heung-No Lee
IEEE Journal of Biomedical and Health Informatics 29 (1) 669 (2025)
https://doi.org/10.1109/JBHI.2024.3377631

Photometric redshift estimation for CSST survey with LSTM neural networks

Zhijian Luo, Yicheng Li, Junhao Lu, Zhu Chen, Liping Fu, Shaohua Zhang, Hubing Xiao, Wei Du, Yan Gong, Chenggang Shu, Wenwen Ma, Xianmin Meng, Xingchen Zhou and Zuhui Fan
Monthly Notices of the Royal Astronomical Society 535 (2) 1844 (2024)
https://doi.org/10.1093/mnras/stae2446

HOLISMOKES

R. Cañameras, S. Schuldt, Y. Shu, S. H. Suyu, S. Taubenberger, I. T. Andika, S. Bag, K. T. Inoue, A. T. Jaelani, L. Leal-Taixé, T. Meinhardt, A. Melo and A. More
Astronomy & Astrophysics 692 A72 (2024)
https://doi.org/10.1051/0004-6361/202347072

Galaxy Spectroscopy without Spectra: Galaxy Properties from Photometric Images with Conditional Diffusion Models

Lars Doorenbos, Eva Sextl, Kevin Heng, Stefano Cavuoti, Massimo Brescia, Olena Torbaniuk, Giuseppe Longo, Raphael Sznitman and Pablo Márquez-Neila
The Astrophysical Journal 977 (1) 131 (2024)
https://doi.org/10.3847/1538-4357/ad8bbe

Mining for Protoclusters at z ∼ 4 from Photometric Data Sets with Deep Learning

Yoshihiro Takeda, Nobunari Kashikawa, Kei Ito, Jun Toshikawa, Rieko Momose, Kent Fujiwara, Yongming Liang, Rikako Ishimoto, Takehiro Yoshioka, Junya Arita, Mariko Kubo and Hisakazu Uchiyama
The Astrophysical Journal 977 (1) 81 (2024)
https://doi.org/10.3847/1538-4357/ad8a67

Decompositions of the mean continuous ranked probability score

Sebastian Arnold, Eva-Maria Walz, Johanna Ziegel and Tilmann Gneiting
Electronic Journal of Statistics 18 (2) (2024)
https://doi.org/10.1214/24-EJS2316

CLAP

Qiufan Lin, Hengxin Ruan, Dominique Fouchez, Shupei Chen, Rui Li, Paulo Montero-Camacho, Nicola R. Napolitano, Yuan-Sen Ting and Wei Zhang
Astronomy & Astrophysics 691 A331 (2024)
https://doi.org/10.1051/0004-6361/202349113

Euclid preparation

A. Enia, M. Bolzonella, L. Pozzetti, A. Humphrey, P. A. C. Cunha, W. G. Hartley, F. Dubath, S. Paltani, X. Lopez Lopez, S. Quai, S. Bardelli, L. Bisigello, S. Cavuoti, G. De Lucia, M. Ginolfi, A. Grazian, M. Siudek, C. Tortora, G. Zamorani, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, et al.
Astronomy & Astrophysics 691 A175 (2024)
https://doi.org/10.1051/0004-6361/202451425

Photometric Redshift Estimation of Quasars by a Cross-modal Contrast Learning Method

Chen Zhang, Wenyu Wang, Meixia Qu, Bin Jiang and YanXia Zhang
The Astronomical Journal 168 (6) 244 (2024)
https://doi.org/10.3847/1538-3881/ad79f9

A dark standard siren measurement of the Hubble constant following LIGO/Virgo/KAGRA O4a and previous runs

C R Bom, V Alfradique, A Palmese, G Teixeira, L Santana-Silva, A Santos and P Darc
Monthly Notices of the Royal Astronomical Society 535 (1) 961 (2024)
https://doi.org/10.1093/mnras/stae2390

SRGz: классификация точечных рентгеновских источников еРОЗИТА в области 1%DESI и калибровка фотометрических красных смещений

А. В. Мещеряков, Г. А. Хорунжев, С. А. Воскресенская1, П. С. Медведев, М. Р. Гильфанов and Р. А. Сюняев
Pisʹma v Astronomičeskij žurnal 50 (1) 38 (2024)
https://doi.org/10.31857/S0320010824010031

Testing the transferability of machine learning techniques for determining photometric redshifts of galaxy catalogue populations

Lara Janiurek, Martin A Hendry and Fiona C Speirits
Monthly Notices of the Royal Astronomical Society 533 (3) 2786 (2024)
https://doi.org/10.1093/mnras/stae1901

Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2

G. Teixeira, C.R. Bom, L. Santana-Silva, B.M.O. Fraga, P. Darc, R. Teixeira, J.F. Wu, P.S. Ferguson, C.E. Martínez-Vázquez, A.H. Riley, A. Drlica-Wagner, Y. Choi, B. Mutlu-Pakdil, A.B. Pace, J.D. Sakowska and G.S. Stringfellow
Astronomy and Computing 49 100886 (2024)
https://doi.org/10.1016/j.ascom.2024.100886

Exploring galactic properties with machine learning

F. Z. Zeraatgari, F. Hafezianzadeh, Y.-X. Zhang, A. Mosallanezhad and J.-Y. Zhang
Astronomy & Astrophysics 688 A33 (2024)
https://doi.org/10.1051/0004-6361/202348714

Unsupervised Domain Adaptation for Constraining Star Formation Histories

Sankalp Gilda, Antoine de Mathelin, Sabine Bellstedt and Guillaume Richard
Astronomy 3 (3) 189 (2024)
https://doi.org/10.3390/astronomy3030012

Galaxy Spectra neural Network (GaSNet). II. Using deep learning for spectral classification and redshift predictions

Fucheng Zhong, Nicola R Napolitano, Caroline Heneka, Rui Li, Franz Erik Bauer, Nicolas Bouche, Johan Comparat, Young-Lo Kim, Jens-Kristian Krogager, Marcella Longhetti, Jonathan Loveday, Boudewijn F Roukema, Benedict L Rouse, Mara Salvato, Crescenzo Tortora, Roberto J Assef, Letizia P Cassarà, Luca Costantin, Scott M Croom, Luke J M Davies, Alexander Fritz, Guillaume Guiglion, Andrew Humphrey, Emanuela Pompei, Claudio Ricci, et al.
Monthly Notices of the Royal Astronomical Society 532 (1) 643 (2024)
https://doi.org/10.1093/mnras/stae1461

hayate: photometric redshift estimation by hybridizing machine learning with template fitting

Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin
Monthly Notices of the Royal Astronomical Society 530 (2) 2012 (2024)
https://doi.org/10.1093/mnras/stae411

Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output

Eva-Maria Walz, Alexander Henzi, Johanna Ziegel and Tilmann Gneiting
SIAM Review 66 (1) 91 (2024)
https://doi.org/10.1137/22M1541915

PICZL: Image-based photometric redshifts for AGN

W. Roster, M. Salvato, S. Krippendorf, A. Saxena, R. Shirley, J. Buchner, J. Wolf, T. Dwelly, F. E. Bauer, J. Aird, C. Ricci, R. J. Assef, S. F. Anderson, X. Liu, A. Merloni, J. Weller and K. Nandra
Astronomy & Astrophysics 692 A260 (2024)
https://doi.org/10.1051/0004-6361/202452361

Deep learning prediction of galaxy stellar populations in the low-redshift Universe

Li-Li Wang, Guang-Jun Yang, Jun-Liang Zhang, Li-Xia Rong, Wen-Yan Zheng, Cong Liu and Zong-Yi Chen
Monthly Notices of the Royal Astronomical Society 527 (4) 10557 (2023)
https://doi.org/10.1093/mnras/stad3756

CNN photometric redshifts in the SDSS at r ≤ 20

M Treyer, R Ait Ouahmed, J Pasquet, S Arnouts, E Bertin and D Fouchez
Monthly Notices of the Royal Astronomical Society 527 (1) 651 (2023)
https://doi.org/10.1093/mnras/stad3171

A Concept of Assessment of LIV Tests with THESEUS Using the Gamma-Ray Bursts Detected by Fermi/GBM

Anastasia Tsvetkova, Luciano Burderi, Alessandro Riggio, Andrea Sanna and Tiziana Di Salvo
Universe 9 (8) 359 (2023)
https://doi.org/10.3390/universe9080359

Measuring photometric redshifts for high-redshift radio source surveys

K. J. Luken, R. P. Norris, X. R. Wang, L. A. F. Park, Y. Guo and M. D. Filipović
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2023.39

CAvity DEtection Tool (CADET): pipeline for detection of X-ray cavities in hot galactic and cluster atmospheres

T Plšek, N Werner, M Topinka and A Simionescu
Monthly Notices of the Royal Astronomical Society 527 (2) 3315 (2023)
https://doi.org/10.1093/mnras/stad3371

SRGz: Classification of eROSITA Point X-ray Sources in the 1$${\%}$$DESI Region and Calibration of Photometric Redshifts*

A. V. Meshcheryakov, G. A. Khorunzhev, S. A. Voskresenskaya, P. S. Medvedev, M. R. Gilfanov and R. A. Sunyaev
Astronomy Letters 49 (11) 646 (2023)
https://doi.org/10.1134/S1063773723110129

AutoSourceID-FeatureExtractor

F. Stoppa, R. Ruiz de Austri, P. Vreeswijk, S. Bhattacharyya, S. Caron, S. Bloemen, G. Zaharijas, G. Principe, V. Vodeb, P. J. Groot, E. Cator and G. Nelemans
Astronomy & Astrophysics 680 A108 (2023)
https://doi.org/10.1051/0004-6361/202346983

DPQP: A Detection Pipeline for Quasar Pair Candidates Based on QSO Photometric Images and Spectra

Yuanbo Liu, Bo Qiu, A-li Luo, Xia Jiang, Lin Yao, Kun Wang and Guiyu Zhao
Universe 9 (9) 425 (2023)
https://doi.org/10.3390/universe9090425

Classifying MaNGA velocity dispersion profiles by machine learning

Yi Duann, Yong Tian and Chung-Ming Ko
RAS Techniques and Instruments 2 (1) 649 (2023)
https://doi.org/10.1093/rasti/rzad044

The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys

M. Huertas-Company and F. Lanusse
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2022.55

Photometric redshift estimation of quasars with fused features from photometric data and images

Lin Yao, Bo Qiu, A-Li Luo, Jianwei Zhou, Kuang Wu, Xiao Kong, Yuanbo Liu, Guiyu Zhao and Kun Wang
Monthly Notices of the Royal Astronomical Society 523 (4) 5799 (2023)
https://doi.org/10.1093/mnras/stad1842

Photo-zSNthesis: Converting Type Ia Supernova Lightcurves to Redshift Estimates via Deep Learning

Helen Qu and Masao Sako
The Astrophysical Journal 954 (2) 201 (2023)
https://doi.org/10.3847/1538-4357/aceafa

The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning

L. Cabayol, M. Eriksen, J. Carretero, et al.
Astronomy & Astrophysics 671 A153 (2023)
https://doi.org/10.1051/0004-6361/202245027

Stellar classification with convolutional neural networks and photometric images: a new catalogue of 50 million SDSS stars without spectra

Jing-Hang Shi, Bo Qiu, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 520 (2) 2269 (2023)
https://doi.org/10.1093/mnras/stad255

Detection of Einstein telescope gravitational wave signals from binary black holes using deep learning

Wathela Alhassan, T Bulik and M Suchenek
Monthly Notices of the Royal Astronomical Society 519 (3) 3843 (2023)
https://doi.org/10.1093/mnras/stac3797

Dealing with imbalanced regression problem for large dataset using scalable Artificial Neural Network

Snigdha Sen, Krishna Pratap Singh and Pavan Chakraborty
New Astronomy 99 101959 (2023)
https://doi.org/10.1016/j.newast.2022.101959

Revised Extinctions and Radii for 1.5 Million Stars Observed by APOGEE, GALAH, and RAVE

Jie Yu, Shourya Khanna, Nathalie Themessl, Saskia Hekker, Guillaume Dréau, Laurent Gizon and Shaolan Bi
The Astrophysical Journal Supplement Series 264 (2) 41 (2023)
https://doi.org/10.3847/1538-4365/acabc8

Photometric identification of compact galaxies, stars, and quasars using multiple neural networks

Siddharth Chaini, Atharva Bagul, Anish Deshpande, Rishi Gondkar, Kaushal Sharma, M Vivek and Ajit Kembhavi
Monthly Notices of the Royal Astronomical Society 518 (2) 3123 (2022)
https://doi.org/10.1093/mnras/stac3336

Improving the accuracy of single-trial fMRI response estimates using GLMsingle

Jacob S Prince, Ian Charest, Jan W Kurzawski, et al.
eLife 11 (2022)
https://doi.org/10.7554/eLife.77599

Predicting the Redshift of Gamma-Ray Loud AGNs Using Supervised Machine Learning. II

Aditya Narendra, Spencer James Gibson, Maria Giovanna Dainotti, Malgorzata Bogdan, Agnieszka Pollo, Ioannis Liodakis, Artem Poliszczuk and Enrico Rinaldi
The Astrophysical Journal Supplement Series 259 (2) 55 (2022)
https://doi.org/10.3847/1538-4365/ac545a

Evaluation of machine learning techniques for forecast uncertainty quantification

Maximiliano A. Sacco, Juan J. Ruiz, Manuel Pulido and Pierre Tandeo
Quarterly Journal of the Royal Meteorological Society 148 (749) 3470 (2022)
https://doi.org/10.1002/qj.4362

Using Multivariate Imputation by Chained Equations to Predict Redshifts of Active Galactic Nuclei

Spencer James Gibson, Aditya Narendra, Maria Giovanna Dainotti, et al.
Frontiers in Astronomy and Space Sciences 9 (2022)
https://doi.org/10.3389/fspas.2022.836215

Soft-labeling approach along with an ensemble of models for predicting subjective freshness of spinach leaves

Kento Koyama and Suxing Lyu
Computers and Electronics in Agriculture 193 106633 (2022)
https://doi.org/10.1016/j.compag.2021.106633

Photometric redshift estimation with convolutional neural networks and galaxy images: Case study of resolving biases in data-driven methods

Q. Lin, D. Fouchez, J. Pasquet, et al.
Astronomy & Astrophysics 662 A36 (2022)
https://doi.org/10.1051/0004-6361/202142751

ulisse: A tool for one-shot sky exploration and its application for detection of active galactic nuclei

Lars Doorenbos, Olena Torbaniuk, Stefano Cavuoti, et al.
Astronomy & Astrophysics 666 A171 (2022)
https://doi.org/10.1051/0004-6361/202243900

Estimation of Photometric Redshifts. II. Identification of Out-of-distribution Data with Neural Networks

Joongoo Lee and Min-Su Shin
The Astronomical Journal 163 (2) 98 (2022)
https://doi.org/10.3847/1538-3881/ac4335

Deep learning methods for obtaining photometric redshift estimations from images

Ben Henghes, Jeyan Thiyagalingam, Connor Pettitt, Tony Hey and Ofer Lahav
Monthly Notices of the Royal Astronomical Society 512 (2) 1696 (2022)
https://doi.org/10.1093/mnras/stac480

Quasar photometric redshifts from incomplete data using deep learning

S J Curran
Monthly Notices of the Royal Astronomical Society 512 (2) 2099 (2022)
https://doi.org/10.1093/mnras/stac660

SDSS-IV MaNGA: Unveiling Galaxy Interaction by Merger Stages with Machine Learning

Yu-Yen Chang, Lihwai Lin, Hsi-An Pan, Chieh-An Lin, Bau-Ching Hsieh, Connor Bottrell and Pin-Wei Wang
The Astrophysical Journal 937 (2) 97 (2022)
https://doi.org/10.3847/1538-4357/ac8c27

Mimicking the halo–galaxy connection using machine learning

Natalí S M de Santi, Natália V N Rodrigues, Antonio D Montero-Dorta, et al.
Monthly Notices of the Royal Astronomical Society 514 (2) 2463 (2022)
https://doi.org/10.1093/mnras/stac1469

Estimating galaxy redshift in radio-selected datasets using machine learning

K.J. Luken, R.P. Norris, L.A.F. Park, X.R. Wang and M.D. Filipović
Astronomy and Computing 39 100557 (2022)
https://doi.org/10.1016/j.ascom.2022.100557

PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars

Shuxin Hong, Zhiqiang Zou, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 518 (4) 5049 (2022)
https://doi.org/10.1093/mnras/stac3259

Fuzzy and SVM Based Classification Model to Classify Spectral Objects in Sloan Digital Sky

Arodh Lal Karn, Carlos Andres Tavera Romero, Sudhakar Sengan, Abolfazl Mehbodniya, Julian L. Webber, Denis A. Pustokhin and Frank-Detlef Wende
IEEE Access 10 101276 (2022)
https://doi.org/10.1109/ACCESS.2022.3207480

Photometric redshifts from SDSS images with an interpretable deep capsule network

Biprateep Dey, Brett H Andrews, Jeffrey A Newman, Yao-Yuan Mao, Markus Michael Rau and Rongpu Zhou
Monthly Notices of the Royal Astronomical Society 515 (4) 5285 (2022)
https://doi.org/10.1093/mnras/stac2105

GeneticKNN: a weighted KNN approach supported by genetic algorithm for photometric redshift estimation of quasars

Bo Han, Li-Na Qiao, Jing-Lin Chen, et al.
Research in Astronomy and Astrophysics 21 (1) 017 (2021)
https://doi.org/10.1088/1674-4527/21/1/17

Identifying AGN Host Galaxies by Machine Learning with HSC+WISE

Yu-Yen Chang, Bau-Ching Hsieh, Wei-Hao Wang, Yen-Ting Lin, Chen-Fatt Lim, Yoshiki Toba, Yuxing Zhong and Siou-Yu Chang
The Astrophysical Journal 920 (2) 68 (2021)
https://doi.org/10.3847/1538-4357/ac167c

Self-supervised Representation Learning for Astronomical Images

Md Abul Hayat, George Stein, Peter Harrington, Zarija Lukić and Mustafa Mustafa
The Astrophysical Journal Letters 911 (2) L33 (2021)
https://doi.org/10.3847/2041-8213/abf2c7

AstroVaDEr: astronomical variational deep embedder for unsupervised morphological classification of galaxies and synthetic image generation

Ashley Spindler, James E Geach and Michael J Smith
Monthly Notices of the Royal Astronomical Society 502 (1) 985 (2021)
https://doi.org/10.1093/mnras/staa3670

GalaxyNet: connecting galaxies and dark matter haloes with deep neural networks and reinforcement learning in large volumes

Benjamin P Moster, Thorsten Naab, Magnus Lindström and Joseph A O’Leary
Monthly Notices of the Royal Astronomical Society 507 (2) 2115 (2021)
https://doi.org/10.1093/mnras/stab1449

Benchmarking and scalability of machine-learning methods for photometric redshift estimation

Ben Henghes, Connor Pettitt, Jeyan Thiyagalingam, Tony Hey and Ofer Lahav
Monthly Notices of the Royal Astronomical Society 505 (4) 4847 (2021)
https://doi.org/10.1093/mnras/stab1513

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Twenty-First-Century Statistical and Computational Challenges in Astrophysics

Eric D. Feigelson, Rafael S. de Souza, Emille E.O. Ishida and Gutti Jogesh Babu
Annual Review of Statistics and Its Application 8 (1) 493 (2021)
https://doi.org/10.1146/annurev-statistics-042720-112045

QSO photometric redshifts using machine learning and neural networks

S J Curran, J P Moss and Y C Perrott
Monthly Notices of the Royal Astronomical Society 503 (2) 2639 (2021)
https://doi.org/10.1093/mnras/stab485

Intelligent Astrophysics

Lars Doorenbos, Stefano Cavuoti, Massimo Brescia, Antonio D’Isanto and Giuseppe Longo
Emergence, Complexity and Computation, Intelligent Astrophysics 39 197 (2021)
https://doi.org/10.1007/978-3-030-65867-0_9

A machine learning approach to galaxy properties: joint redshift–stellar mass probability distributions with Random Forest

S Mucesh, W G Hartley, A Palmese, et al.
Monthly Notices of the Royal Astronomical Society 502 (2) 2770 (2021)
https://doi.org/10.1093/mnras/stab164

SILVERRUSH X: Machine Learning-aided Selection of 9318 LAEs at z = 2.2, 3.3, 4.9, 5.7, 6.6, and 7.0 from the HSC SSP and CHORUS Survey Data

Yoshiaki Ono, Ryohei Itoh, Takatoshi Shibuya, Masami Ouchi, Yuichi Harikane, Satoshi Yamanaka, Akio K. Inoue, Toshiyuki Amagasa, Daichi Miura, Maiki Okura, Kazuhiro Shimasaku, Ikuru Iwata, Yoshiaki Taniguchi, Seiji Fujimoto, Masanori Iye, Anton T. Jaelani, Nobunari Kashikawa, Shotaro Kikuchihara, Satoshi Kikuta, Masakazu A. R. Kobayashi, Haruka Kusakabe, Chien-Hsiu Lee, Yongming Liang, Yoshiki Matsuoka, Rieko Momose, et al.
The Astrophysical Journal 911 (2) 78 (2021)
https://doi.org/10.3847/1538-4357/abea15

Intervening or associated? Machine learning classification of redshifted H i 21-cm absorption

S J Curran
Monthly Notices of the Royal Astronomical Society 506 (1) 1548 (2021)
https://doi.org/10.1093/mnras/stab1865

Deep transfer learning for the classification of variable sources

Dae-Won Kim, Doyeob Yeo, Coryn A. L. Bailer-Jones and Giyoung Lee
Astronomy & Astrophysics 653 A22 (2021)
https://doi.org/10.1051/0004-6361/202140369

Predicting the Redshift of γ-Ray-loud AGNs Using Supervised Machine Learning

Maria Giovanna Dainotti, Malgorzata Bogdan, Aditya Narendra, Spencer James Gibson, Blazej Miasojedow, Ioannis Liodakis, Agnieszka Pollo, Trevor Nelson, Kamil Wozniak, Zooey Nguyen and Johan Larrson
The Astrophysical Journal 920 (2) 118 (2021)
https://doi.org/10.3847/1538-4357/ac1748

Quantifying Non-parametric Structure of High-redshift Galaxies with Deep Learning

C. Tohill, L. Ferreira, C. J. Conselice, S. P. Bamford and F. Ferrari
The Astrophysical Journal 916 (1) 4 (2021)
https://doi.org/10.3847/1538-4357/ac033c

Machine-learning computation of distance modulus for local galaxies

A. A. Elyiv, O. V. Melnyk, I. B. Vavilova, D. V. Dobrycheva and V. E. Karachentseva
Astronomy & Astrophysics 635 A124 (2020)
https://doi.org/10.1051/0004-6361/201936883

Probabilistic neural networks for fluid flow surrogate modeling and data recovery

Romit Maulik, Kai Fukami, Nesar Ramachandra, Koji Fukagata and Kunihiko Taira
Physical Review Fluids 5 (10) (2020)
https://doi.org/10.1103/PhysRevFluids.5.104401

Photometric redshift estimation using ExtraTreesRegressor: Galaxies and quasars from low to very high redshifts

Moonzarin Reza and Mohammad Ariful Haque
Astrophysics and Space Science 365 (3) (2020)
https://doi.org/10.1007/s10509-020-03758-w

PhotoWeb redshift: boosting photometric redshift accuracy with large spectroscopic surveys

M. Shuntov, J. Pasquet, S. Arnouts, et al.
Astronomy & Astrophysics 636 A90 (2020)
https://doi.org/10.1051/0004-6361/201937382

Quantifying uncertainties on fission fragment mass yields with mixture density networks

A E Lovell, A T Mohan and P Talou
Journal of Physics G: Nuclear and Particle Physics 47 (11) 114001 (2020)
https://doi.org/10.1088/1361-6471/ab9f58

Galaxy morphological classification in deep-wide surveys via unsupervised machine learning

G Martin, S Kaviraj, A Hocking, S C Read and J E Geach
Monthly Notices of the Royal Astronomical Society 491 (1) 1408 (2020)
https://doi.org/10.1093/mnras/stz3006

Augmenting machine learning photometric redshifts with Gaussian mixture models

P W Hatfield, I A Almosallam, M J Jarvis, et al.
Monthly Notices of the Royal Astronomical Society 498 (4) 5498 (2020)
https://doi.org/10.1093/mnras/staa2741

Conditional density estimation tools in python and R with applications to photometric redshifts and likelihood-free cosmological inference

N. Dalmasso, T. Pospisil, A.B. Lee, et al.
Astronomy and Computing 30 100362 (2020)
https://doi.org/10.1016/j.ascom.2019.100362

On Neural Architectures for Astronomical Time-series Classification with Application to Variable Stars

Sara Jamal and Joshua S. Bloom
The Astrophysical Journal Supplement Series 250 (2) 30 (2020)
https://doi.org/10.3847/1538-4365/aba8ff

The PAU Survey: background light estimation with deep learning techniques

L Cabayol-Garcia, M Eriksen, A Alarcón, et al.
Monthly Notices of the Royal Astronomical Society 491 (4) 5392 (2020)
https://doi.org/10.1093/mnras/stz3274

Assessing the performance of LTE and NLTE synthetic stellar spectra in a machine learning framework

Spencer Bialek, Sébastien Fabbro, Kim A Venn, et al.
Monthly Notices of the Royal Astronomical Society 498 (3) 3817 (2020)
https://doi.org/10.1093/mnras/staa2582