The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Hybrid-z: Enhancing the Kilo-Degree Survey bright galaxy sample photometric redshifts with deep learning
Anjitha John William, Priyanka Jalan, Maciej Bilicki, Wojciech A. Hellwing, Hareesh Thuruthipilly and Szymon J. Nakoneczny Astronomy & Astrophysics 698 A276 (2025) https://doi.org/10.1051/0004-6361/202453576
Improving Photometric Redshift Estimation for CSST Mock Catalog Using SED Templates Calibrated with Perturbation Algorithm
Yicheng Li, Liping Fu, Zhu Chen, Zhijian Luo, Wei Du, Yan Gong, Xianmin Meng, Junhao Lu, Zhirui Tang, Pengfei Chen, Shaohua Zhang, Chenggang Shu, Xingchen Zhou and Zuhui Fan Research in Astronomy and Astrophysics 25(5) 055021 (2025) https://doi.org/10.1088/1674-4527/adcc7e
I. Kovačić, M. Baes, A. Nersesian, N. Andreadis, L. Nemani, Abdurro’uf, L. Bisigello, M. Bolzonella, C. Tortora, A. van der Wel, S. Cavuoti, C. J. Conselice, A. Enia, L. K. Hunt, P. Iglesias-Navarro, E. Iodice, J. H. Knapen, F. R. Marleau, O. Müller, R. F. Peletier, J. Román, R. Ragusa, P. Salucci, T. Saifollahi, M. Scodeggio, et al. Astronomy & Astrophysics 695 A284 (2025) https://doi.org/10.1051/0004-6361/202453111
Performance evaluation of efficient interpretable CNN-transformer model for redshift prediction
Machine Learning–based Photometric Redshifts for Galaxies in the North Ecliptic Pole Wide Field: Catalogs of Spectroscopic and Photometric Redshifts
Taewan Kim, Jubee Sohn, Ho Seong Hwang, Simon C.-C. Ho, Denis Burgarella, Tomotsugu Goto, Tetsuya Hashimoto, Woong-Seob Jeong, Seong Jin Kim, Matthew A. Malkan, Takamitsu Miyaji, Nagisa Oi, Hyunjin Shim, Hyunmi Song, Narae Hwang and Byeong-Gon Park The Astrophysical Journal Supplement Series 277(2) 41 (2025) https://doi.org/10.3847/1538-4365/adb42a
Predicting the Physical Properties of Dark Matter Subhalos from Baryonic Parameters Using Machine Learning
Deep Drug Synergy Prediction Network Using Modified Triangular Mutation-Based Differential Evolution
Dilbag Singh, Ahmad Ali Alzubi, Manjit Kaur, Vijay Kumar and Heung-No Lee IEEE Journal of Biomedical and Health Informatics 29(1) 669 (2025) https://doi.org/10.1109/JBHI.2024.3377631
HOLISMOKES
S. Schuldt, R. Cañameras, I. T. Andika, S. Bag, A. Melo, Y. Shu, S. H. Suyu, S. Taubenberger and C. Grillo Astronomy & Astrophysics 693 A291 (2025) https://doi.org/10.1051/0004-6361/202450927
Photometric redshift estimation for CSST survey with LSTM neural networks
Zhijian Luo, Yicheng Li, Junhao Lu, Zhu Chen, Liping Fu, Shaohua Zhang, Hubing Xiao, Wei Du, Yan Gong, Chenggang Shu, Wenwen Ma, Xianmin Meng, Xingchen Zhou and Zuhui Fan Monthly Notices of the Royal Astronomical Society 535(2) 1844 (2024) https://doi.org/10.1093/mnras/stae2446
HOLISMOKES
R. Cañameras, S. Schuldt, Y. Shu, S. H. Suyu, S. Taubenberger, I. T. Andika, S. Bag, K. T. Inoue, A. T. Jaelani, L. Leal-Taixé, T. Meinhardt, A. Melo and A. More Astronomy & Astrophysics 692 A72 (2024) https://doi.org/10.1051/0004-6361/202347072
Galaxy Spectroscopy without Spectra: Galaxy Properties from Photometric Images with Conditional Diffusion Models
Lars Doorenbos, Eva Sextl, Kevin Heng, Stefano Cavuoti, Massimo Brescia, Olena Torbaniuk, Giuseppe Longo, Raphael Sznitman and Pablo Márquez-Neila The Astrophysical Journal 977(1) 131 (2024) https://doi.org/10.3847/1538-4357/ad8bbe
Mining for Protoclusters at z ∼ 4 from Photometric Data Sets with Deep Learning
Yoshihiro Takeda, Nobunari Kashikawa, Kei Ito, Jun Toshikawa, Rieko Momose, Kent Fujiwara, Yongming Liang, Rikako Ishimoto, Takehiro Yoshioka, Junya Arita, Mariko Kubo and Hisakazu Uchiyama The Astrophysical Journal 977(1) 81 (2024) https://doi.org/10.3847/1538-4357/ad8a67
Decompositions of the mean continuous ranked probability score
Sebastian Arnold, Eva-Maria Walz, Johanna Ziegel and Tilmann Gneiting Electronic Journal of Statistics 18(2) (2024) https://doi.org/10.1214/24-EJS2316
CLAP
Qiufan Lin, Hengxin Ruan, Dominique Fouchez, Shupei Chen, Rui Li, Paulo Montero-Camacho, Nicola R. Napolitano, Yuan-Sen Ting and Wei Zhang Astronomy & Astrophysics 691 A331 (2024) https://doi.org/10.1051/0004-6361/202349113
Euclid preparation
A. Enia, M. Bolzonella, L. Pozzetti, A. Humphrey, P. A. C. Cunha, W. G. Hartley, F. Dubath, S. Paltani, X. Lopez Lopez, S. Quai, S. Bardelli, L. Bisigello, S. Cavuoti, G. De Lucia, M. Ginolfi, A. Grazian, M. Siudek, C. Tortora, G. Zamorani, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, et al. Astronomy & Astrophysics 691 A175 (2024) https://doi.org/10.1051/0004-6361/202451425
Photometric Redshift Estimation of Quasars by a Cross-modal Contrast Learning Method
A dark standard siren measurement of the Hubble constant following LIGO/Virgo/KAGRA O4a and previous runs
C R Bom, V Alfradique, A Palmese, G Teixeira, L Santana-Silva, A Santos and P Darc Monthly Notices of the Royal Astronomical Society 535(1) 961 (2024) https://doi.org/10.1093/mnras/stae2390
SRGz: классификация точечных рентгеновских источников еРОЗИТА в области 1%DESI и калибровка фотометрических красных смещений
А. В. Мещеряков, Г. А. Хорунжев, С. А. Воскресенская1, П. С. Медведев, М. Р. Гильфанов and Р. А. Сюняев Pisʹma v Astronomičeskij žurnal 50(1) 38 (2024) https://doi.org/10.31857/S0320010824010031
Testing the transferability of machine learning techniques for determining photometric redshifts of galaxy catalogue populations
Lara Janiurek, Martin A Hendry and Fiona C Speirits Monthly Notices of the Royal Astronomical Society 533(3) 2786 (2024) https://doi.org/10.1093/mnras/stae1901
Photometric redshifts probability density estimation from recurrent neural networks in the DECam local volume exploration survey data release 2
G. Teixeira, C.R. Bom, L. Santana-Silva, B.M.O. Fraga, P. Darc, R. Teixeira, J.F. Wu, P.S. Ferguson, C.E. Martínez-Vázquez, A.H. Riley, A. Drlica-Wagner, Y. Choi, B. Mutlu-Pakdil, A.B. Pace, J.D. Sakowska and G.S. Stringfellow Astronomy and Computing 49 100886 (2024) https://doi.org/10.1016/j.ascom.2024.100886
Amirreza Dolatpour Fathkouhi and Geoffrey Charles Fox 1 (2024) https://doi.org/10.1109/e-Science62913.2024.10678724
Exploring galactic properties with machine learning
Galaxy Spectra neural Network (GaSNet). II. Using deep learning for spectral classification and redshift predictions
Fucheng Zhong, Nicola R Napolitano, Caroline Heneka, Rui Li, Franz Erik Bauer, Nicolas Bouche, Johan Comparat, Young-Lo Kim, Jens-Kristian Krogager, Marcella Longhetti, Jonathan Loveday, Boudewijn F Roukema, Benedict L Rouse, Mara Salvato, Crescenzo Tortora, Roberto J Assef, Letizia P Cassarà, Luca Costantin, Scott M Croom, Luke J M Davies, Alexander Fritz, Guillaume Guiglion, Andrew Humphrey, Emanuela Pompei, Claudio Ricci, et al. Monthly Notices of the Royal Astronomical Society 532(1) 643 (2024) https://doi.org/10.1093/mnras/stae1461
Stellar Classification with Vision Transformer and SDSS Photometric Images
hayate: photometric redshift estimation by hybridizing machine learning with template fitting
Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin Monthly Notices of the Royal Astronomical Society 530(2) 2012 (2024) https://doi.org/10.1093/mnras/stae411
Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output
W. Roster, M. Salvato, S. Krippendorf, A. Saxena, R. Shirley, J. Buchner, J. Wolf, T. Dwelly, F. E. Bauer, J. Aird, C. Ricci, R. J. Assef, S. F. Anderson, X. Liu, A. Merloni, J. Weller and K. Nandra Astronomy & Astrophysics 692 A260 (2024) https://doi.org/10.1051/0004-6361/202452361
Deep learning prediction of galaxy stellar populations in the low-redshift Universe
Li-Li Wang, Guang-Jun Yang, Jun-Liang Zhang, Li-Xia Rong, Wen-Yan Zheng, Cong Liu and Zong-Yi Chen Monthly Notices of the Royal Astronomical Society 527(4) 10557 (2023) https://doi.org/10.1093/mnras/stad3756
CNN photometric redshifts in the SDSS at r ≤ 20
M Treyer, R Ait Ouahmed, J Pasquet, S Arnouts, E Bertin and D Fouchez Monthly Notices of the Royal Astronomical Society 527(1) 651 (2023) https://doi.org/10.1093/mnras/stad3171
A Concept of Assessment of LIV Tests with THESEUS Using the Gamma-Ray Bursts Detected by Fermi/GBM
Measuring photometric redshifts for high-redshift radio source surveys
K. J. Luken, R. P. Norris, X. R. Wang, L. A. F. Park, Y. Guo and M. D. Filipović Publications of the Astronomical Society of Australia 40 (2023) https://doi.org/10.1017/pasa.2023.39
CAvity DEtection Tool (CADET): pipeline for detection of X-ray cavities in hot galactic and cluster atmospheres
T Plšek, N Werner, M Topinka and A Simionescu Monthly Notices of the Royal Astronomical Society 527(2) 3315 (2023) https://doi.org/10.1093/mnras/stad3371
SRGz: Classification of eROSITA Point X-ray Sources in the 1$${\%}$$DESI Region and Calibration of Photometric Redshifts*
A. V. Meshcheryakov, G. A. Khorunzhev, S. A. Voskresenskaya, P. S. Medvedev, M. R. Gilfanov and R. A. Sunyaev Astronomy Letters 49(11) 646 (2023) https://doi.org/10.1134/S1063773723110129
AutoSourceID-FeatureExtractor
F. Stoppa, R. Ruiz de Austri, P. Vreeswijk, S. Bhattacharyya, S. Caron, S. Bloemen, G. Zaharijas, G. Principe, V. Vodeb, P. J. Groot, E. Cator and G. Nelemans Astronomy & Astrophysics 680 A108 (2023) https://doi.org/10.1051/0004-6361/202346983
DPQP: A Detection Pipeline for Quasar Pair Candidates Based on QSO Photometric Images and Spectra
Photometric redshift estimation of quasars with fused features from photometric data and images
Lin Yao, Bo Qiu, A-Li Luo, Jianwei Zhou, Kuang Wu, Xiao Kong, Yuanbo Liu, Guiyu Zhao and Kun Wang Monthly Notices of the Royal Astronomical Society 523(4) 5799 (2023) https://doi.org/10.1093/mnras/stad1842
Photo-zSNthesis: Converting Type Ia Supernova Lightcurves to Redshift Estimates via Deep Learning
Revised Extinctions and Radii for 1.5 Million Stars Observed by APOGEE, GALAH, and RAVE
Jie Yu, Shourya Khanna, Nathalie Themessl, Saskia Hekker, Guillaume Dréau, Laurent Gizon and Shaolan Bi The Astrophysical Journal Supplement Series 264(2) 41 (2023) https://doi.org/10.3847/1538-4365/acabc8
Photometric identification of compact galaxies, stars, and quasars using multiple neural networks
Siddharth Chaini, Atharva Bagul, Anish Deshpande, Rishi Gondkar, Kaushal Sharma, M Vivek and Ajit Kembhavi Monthly Notices of the Royal Astronomical Society 518(2) 3123 (2022) https://doi.org/10.1093/mnras/stac3336
Improving the accuracy of single-trial fMRI response estimates using GLMsingle
Predicting the Redshift of Gamma-Ray Loud AGNs Using Supervised Machine Learning. II
Aditya Narendra, Spencer James Gibson, Maria Giovanna Dainotti, Malgorzata Bogdan, Agnieszka Pollo, Ioannis Liodakis, Artem Poliszczuk and Enrico Rinaldi The Astrophysical Journal Supplement Series 259(2) 55 (2022) https://doi.org/10.3847/1538-4365/ac545a
Evaluation of machine learning techniques for forecast uncertainty quantification
Maximiliano A. Sacco, Juan J. Ruiz, Manuel Pulido and Pierre Tandeo Quarterly Journal of the Royal Meteorological Society 148(749) 3470 (2022) https://doi.org/10.1002/qj.4362
Using Multivariate Imputation by Chained Equations to Predict Redshifts of Active Galactic Nuclei
Deep learning methods for obtaining photometric redshift estimations from images
Ben Henghes, Jeyan Thiyagalingam, Connor Pettitt, Tony Hey and Ofer Lahav Monthly Notices of the Royal Astronomical Society 512(2) 1696 (2022) https://doi.org/10.1093/mnras/stac480
Quasar photometric redshifts from incomplete data using deep learning
SDSS-IV MaNGA: Unveiling Galaxy Interaction by Merger Stages with Machine Learning
Yu-Yen Chang, Lihwai Lin, Hsi-An Pan, Chieh-An Lin, Bau-Ching Hsieh, Connor Bottrell and Pin-Wei Wang The Astrophysical Journal 937(2) 97 (2022) https://doi.org/10.3847/1538-4357/ac8c27
Mimicking the halo–galaxy connection using machine learning
Natalí S M de Santi, Natália V N Rodrigues, Antonio D Montero-Dorta, et al. Monthly Notices of the Royal Astronomical Society 514(2) 2463 (2022) https://doi.org/10.1093/mnras/stac1469
Estimating galaxy redshift in radio-selected datasets using machine learning
Fuzzy and SVM Based Classification Model to Classify Spectral Objects in Sloan Digital Sky
Arodh Lal Karn, Carlos Andres Tavera Romero, Sudhakar Sengan, Abolfazl Mehbodniya, Julian L. Webber, Denis A. Pustokhin and Frank-Detlef Wende IEEE Access 10 101276 (2022) https://doi.org/10.1109/ACCESS.2022.3207480
Photometric redshifts from SDSS images with an interpretable deep capsule network
Biprateep Dey, Brett H Andrews, Jeffrey A Newman, Yao-Yuan Mao, Markus Michael Rau and Rongpu Zhou Monthly Notices of the Royal Astronomical Society 515(4) 5285 (2022) https://doi.org/10.1093/mnras/stac2105
Self-supervised Representation Learning for Astronomical Images
Md Abul Hayat, George Stein, Peter Harrington, Zarija Lukić and Mustafa Mustafa The Astrophysical Journal Letters 911(2) L33 (2021) https://doi.org/10.3847/2041-8213/abf2c7
AstroVaDEr: astronomical variational deep embedder for unsupervised morphological classification of galaxies and synthetic image generation
Ashley Spindler, James E Geach and Michael J Smith Monthly Notices of the Royal Astronomical Society 502(1) 985 (2021) https://doi.org/10.1093/mnras/staa3670
Photometric redshift estimation with a convolutional neural network: NetZ
Benchmarking and scalability of machine-learning methods for photometric redshift estimation
Ben Henghes, Connor Pettitt, Jeyan Thiyagalingam, Tony Hey and Ofer Lahav Monthly Notices of the Royal Astronomical Society 505(4) 4847 (2021) https://doi.org/10.1093/mnras/stab1513
Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case
Lars Doorenbos, Stefano Cavuoti, Massimo Brescia, Antonio D’Isanto and Giuseppe Longo Emergence, Complexity and Computation, Intelligent Astrophysics 39 197 (2021) https://doi.org/10.1007/978-3-030-65867-0_9
A machine learning approach to galaxy properties: joint redshift–stellar mass probability distributions with Random Forest
Galaxy morphological classification in deep-wide surveys via unsupervised machine learning
G Martin, S Kaviraj, A Hocking, S C Read and J E Geach Monthly Notices of the Royal Astronomical Society 491(1) 1408 (2020) https://doi.org/10.1093/mnras/stz3006
Augmenting machine learning photometric redshifts with Gaussian mixture models
P W Hatfield, I A Almosallam, M J Jarvis, et al. Monthly Notices of the Royal Astronomical Society 498(4) 5498 (2020) https://doi.org/10.1093/mnras/staa2741
Conditional density estimation tools in python and R with applications to photometric redshifts and likelihood-free cosmological inference
The PAU Survey: background light estimation with deep learning techniques
L Cabayol-Garcia, M Eriksen, A Alarcón, et al. Monthly Notices of the Royal Astronomical Society 491(4) 5392 (2020) https://doi.org/10.1093/mnras/stz3274
Assessing the performance of LTE and NLTE synthetic stellar spectra in a machine learning framework
Spencer Bialek, Sébastien Fabbro, Kim A Venn, et al. Monthly Notices of the Royal Astronomical Society 498(3) 3817 (2020) https://doi.org/10.1093/mnras/staa2582