Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Photometric Redshift Catalogue of Galaxies from the DESI Legacy Imaging Surveys DR10

Changhua Li, Yanxia Zhang, Chenzhou Cui, Shirui Wei, Jingyi Zhang, Yongheng Zhao, Xue-Bing Wu, Yihan Tao, Shanshan Li, Youfen Wang and Zihan Kang
The Astronomical Journal 168 (6) 233 (2024)
https://doi.org/10.3847/1538-3881/ad7c52

Deep Learning Voigt Profiles. I. Single-Cloud Doublets

Bryson Stemock, Christopher W. Churchill, Avery Lee, Sultan Hassan, Caitlin Doughty and Rogelio Ochoa
The Astronomical Journal 167 (6) 287 (2024)
https://doi.org/10.3847/1538-3881/ad402b

Resolving the vicinity of supermassive black holes with gravitational microlensing

Henry Best, Joshua Fagin, Georgios Vernardos and Matthew O’Dowd
Monthly Notices of the Royal Astronomical Society 531 (1) 1095 (2024)
https://doi.org/10.1093/mnras/stae1182

hayate: photometric redshift estimation by hybridizing machine learning with template fitting

Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin
Monthly Notices of the Royal Astronomical Society 530 (2) 2012 (2024)
https://doi.org/10.1093/mnras/stae411

Deep learning and quantum algorithms approach to investigating the feasibility of wormholes: A review

Wahyu Rahmaniar, B. Ramzan and Alfian Ma'arif
Astronomy and Computing 47 100802 (2024)
https://doi.org/10.1016/j.ascom.2024.100802

Hidden depths in the local Universe: The Stellar Stream Legacy Survey

David Martínez-Delgado, Andrew P. Cooper, Javier Román, et al.
Astronomy & Astrophysics 671 A141 (2023)
https://doi.org/10.1051/0004-6361/202245011

The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys

M. Huertas-Company and F. Lanusse
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2022.55

Wavelet based tone mapping (TM) enhancement to a detection system for faint and compact sources in HDR and large FOV radio scenes

H. Shan, L. Cui, X.Y. Hong, X. Liu and N. Chang
Astronomy and Computing 42 100684 (2023)
https://doi.org/10.1016/j.ascom.2022.100684

Photometric redshift estimation of quasars with fused features from photometric data and images

Lin Yao, Bo Qiu, A-Li Luo, Jianwei Zhou, Kuang Wu, Xiao Kong, Yuanbo Liu, Guiyu Zhao and Kun Wang
Monthly Notices of the Royal Astronomical Society 523 (4) 5799 (2023)
https://doi.org/10.1093/mnras/stad1842

The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Quasar Survey: Quasar Properties from Data Releases 6 to 9

Jun-Jie Jin, Xue-Bing Wu, Yuming Fu, Su Yao, Yan-Li Ai, Xiao-Tong Feng, Zi-Qi He, Qin-Chun Ma, Yu-Xuan Pang, Rui Zhu, Yan-xia Zhang, Hai-long Yuan and Zhi-Ying Huo
The Astrophysical Journal Supplement Series 265 (1) 25 (2023)
https://doi.org/10.3847/1538-4365/acaf89

Measuring photometric redshifts for high-redshift radio source surveys

K. J. Luken, R. P. Norris, X. R. Wang, L. A. F. Park, Y. Guo and M. D. Filipović
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2023.39

The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning

L. Cabayol, M. Eriksen, J. Carretero, et al.
Astronomy & Astrophysics 671 A153 (2023)
https://doi.org/10.1051/0004-6361/202245027

AGNet: weighing black holes with deep learning

Joshua Yao-Yu Lin, Sneh Pandya, Devanshi Pratap, Xin Liu, Matias Carrasco Kind and Volodymyr Kindratenko
Monthly Notices of the Royal Astronomical Society 518 (4) 4921 (2022)
https://doi.org/10.1093/mnras/stac3339

Using Multivariate Imputation by Chained Equations to Predict Redshifts of Active Galactic Nuclei

Spencer James Gibson, Aditya Narendra, Maria Giovanna Dainotti, et al.
Frontiers in Astronomy and Space Sciences 9 (2022)
https://doi.org/10.3389/fspas.2022.836215

An Intelligent 2-D Chart Method With Autodetection for Weak Quasar Blind TDD Estimation in Deep Space △DOR Measurement

Lanhua Xia, Jifei Tang, Jun Wu, Yang Chen and Rabi Mahapatra
IEEE Transactions on Aerospace and Electronic Systems 58 (6) 5000 (2022)
https://doi.org/10.1109/TAES.2022.3169731

Estimation of Photometric Redshifts. II. Identification of Out-of-distribution Data with Neural Networks

Joongoo Lee and Min-Su Shin
The Astronomical Journal 163 (2) 98 (2022)
https://doi.org/10.3847/1538-3881/ac4335

Deep learning in searching the spectroscopic redshift of quasars

F Rastegarnia, M T Mirtorabi, R Moradi, A Vafaei Sadr and Y Wang
Monthly Notices of the Royal Astronomical Society 511 (3) 4490 (2022)
https://doi.org/10.1093/mnras/stac076

Predicting the Redshift of Gamma-Ray Loud AGNs Using Supervised Machine Learning. II

Aditya Narendra, Spencer James Gibson, Maria Giovanna Dainotti, Malgorzata Bogdan, Agnieszka Pollo, Ioannis Liodakis, Artem Poliszczuk and Enrico Rinaldi
The Astrophysical Journal Supplement Series 259 (2) 55 (2022)
https://doi.org/10.3847/1538-4365/ac545a

Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02 I. B. VAVILOVA, V. KHRAMTSOV, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (1) 03 (2022)
https://doi.org/10.15407/knit2022.01.003

Identifications of RR Lyrae Stars and Quasars from the Simulated Data of Mephisto-W Survey

Lei Lei, Bing-Qiu Chen, Jin-Da Li, et al.
Research in Astronomy and Astrophysics 22 (2) 025004 (2022)
https://doi.org/10.1088/1674-4527/ac3adc

Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features

V. KHRAMTSOV, I. B. VAVILOVA, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (5) 27 (2022)
https://doi.org/10.15407/knit2022.05.027

Estimating galaxy redshift in radio-selected datasets using machine learning

K.J. Luken, R.P. Norris, L.A.F. Park, X.R. Wang and M.D. Filipović
Astronomy and Computing 39 100557 (2022)
https://doi.org/10.1016/j.ascom.2022.100557

Observational Cosmology with Artificial Neural Networks

Juan de Dios Rojas Olvera, Isidro Gómez-Vargas and Jose Alberto Vázquez
Universe 8 (2) 120 (2022)
https://doi.org/10.3390/universe8020120

Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

S. J. Nakoneczny, M. Bilicki, A. Pollo, et al.
Astronomy & Astrophysics 649 A81 (2021)
https://doi.org/10.1051/0004-6361/202039684

SILVERRUSH X: Machine Learning-aided Selection of 9318 LAEs at z = 2.2, 3.3, 4.9, 5.7, 6.6, and 7.0 from the HSC SSP and CHORUS Survey Data

Yoshiaki Ono, Ryohei Itoh, Takatoshi Shibuya, Masami Ouchi, Yuichi Harikane, Satoshi Yamanaka, Akio K. Inoue, Toshiyuki Amagasa, Daichi Miura, Maiki Okura, Kazuhiro Shimasaku, Ikuru Iwata, Yoshiaki Taniguchi, Seiji Fujimoto, Masanori Iye, Anton T. Jaelani, Nobunari Kashikawa, Shotaro Kikuchihara, Satoshi Kikuta, Masakazu A. R. Kobayashi, Haruka Kusakabe, Chien-Hsiu Lee, Yongming Liang, Yoshiki Matsuoka, Rieko Momose, et al.
The Astrophysical Journal 911 (2) 78 (2021)
https://doi.org/10.3847/1538-4357/abea15

Estimation of Photometric Redshifts. I. Machine-learning Inference for Pan-STARRS1 Galaxies Using Neural Networks

Joongoo Lee and Min-Su Shin
The Astronomical Journal 162 (6) 297 (2021)
https://doi.org/10.3847/1538-3881/ac2e96

Predicting the Redshift of γ-Ray-loud AGNs Using Supervised Machine Learning

Maria Giovanna Dainotti, Malgorzata Bogdan, Aditya Narendra, Spencer James Gibson, Blazej Miasojedow, Ioannis Liodakis, Agnieszka Pollo, Trevor Nelson, Kamil Wozniak, Zooey Nguyen and Johan Larrson
The Astrophysical Journal 920 (2) 118 (2021)
https://doi.org/10.3847/1538-4357/ac1748

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Intervening or associated? Machine learning classification of redshifted H i 21-cm absorption

S J Curran
Monthly Notices of the Royal Astronomical Society 506 (1) 1548 (2021)
https://doi.org/10.1093/mnras/stab1865

Finding Quasars behind the Galactic Plane. I. Candidate Selections with Transfer Learning

Yuming Fu, Xue-Bing Wu, Qian Yang, Anthony G. A. Brown, Xiaotong Feng, Qinchun Ma and Shuyan Li
The Astrophysical Journal Supplement Series 254 (1) 6 (2021)
https://doi.org/10.3847/1538-4365/abe85e

QSO photometric redshifts using machine learning and neural networks

S J Curran, J P Moss and Y C Perrott
Monthly Notices of the Royal Astronomical Society 503 (2) 2639 (2021)
https://doi.org/10.1093/mnras/stab485

Identifying AGN Host Galaxies by Machine Learning with HSC+WISE

Yu-Yen Chang, Bau-Ching Hsieh, Wei-Hao Wang, Yen-Ting Lin, Chen-Fatt Lim, Yoshiki Toba, Yuxing Zhong and Siou-Yu Chang
The Astrophysical Journal 920 (2) 68 (2021)
https://doi.org/10.3847/1538-4357/ac167c

Morphological classification of galaxies with deep learning: comparing 3-way and 4-way CNNs

Mitchell K Cavanagh, Kenji Bekki and Brent A Groves
Monthly Notices of the Royal Astronomical Society 506 (1) 659 (2021)
https://doi.org/10.1093/mnras/stab1552

The optical luminosity function of LOFAR radio-selected quasars at 1.4 ≤ z ≤ 5.0 in the NDWFS-Boötes field

E. Retana-Montenegro and H. J. A. Röttgering
Astronomy & Astrophysics 636 A12 (2020)
https://doi.org/10.1051/0004-6361/201936577

SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae

V. Ashley Villar, Griffin Hosseinzadeh, Edo Berger, Michelle Ntampaka, David O. Jones, Peter Challis, Ryan Chornock, Maria R. Drout, Ryan J. Foley, Robert P. Kirshner, Ragnhild Lunnan, Raffaella Margutti, Dan Milisavljevic, Nathan Sanders, Yen-Chen Pan, Armin Rest, Daniel M. Scolnic, Eugene Magnier, Nigel Metcalfe, Richard Wainscoat and Christopher Waters
The Astrophysical Journal 905 (2) 94 (2020)
https://doi.org/10.3847/1538-4357/abc6fd

Celestial Spectra Classification Network Based on Residual and Attention Mechanisms

Zhiqiang Zou, Tiancheng Zhu, Lingzhe Xu and A-Li Luo
Publications of the Astronomical Society of the Pacific 132 (1010) 044503 (2020)
https://doi.org/10.1088/1538-3873/ab7548

Deep learning for strong lensing search: tests of the convolutional neural networks and new candidates from KiDS DR3

Zizhao He, Xinzhong Er, Qian Long, et al.
Monthly Notices of the Royal Astronomical Society 497 (1) 556 (2020)
https://doi.org/10.1093/mnras/staa1917

Telescope performance real-time monitoring based on machine learning

Tian Z Hu, Yong Zhang, Xiang Q Cui, et al.
Monthly Notices of the Royal Astronomical Society 500 (1) 388 (2020)
https://doi.org/10.1093/mnras/staa3087

A Comparison of Photometric Redshift Techniques for Large Radio Surveys

Ray P. Norris, M. Salvato, G. Longo, et al.
Publications of the Astronomical Society of the Pacific 131 (1004) 108004 (2019)
https://doi.org/10.1088/1538-3873/ab0f7b

Photometric redshifts from SDSS images using a convolutional neural network

Johanna Pasquet, E. Bertin, M. Treyer, S. Arnouts and D. Fouchez
Astronomy & Astrophysics 621 A26 (2019)
https://doi.org/10.1051/0004-6361/201833617

Preliminary Results of Using k-nearest-neighbor Regression to Estimate the Redshift of Radio-selected Data Sets

Kieran J. Luken, Ray P. Norris and Laurence A. F. Park
Publications of the Astronomical Society of the Pacific 131 (1004) 108003 (2019)
https://doi.org/10.1088/1538-3873/aaea17