The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Hybrid summary statistics: neural weak lensing inference beyond the power spectrum
T. Lucas Makinen, Alan Heavens, Natalia Porqueres, Tom Charnock, Axel Lapel and Benjamin D. Wandelt Journal of Cosmology and Astroparticle Physics 2025(01) 095 (2025) https://doi.org/10.1088/1475-7516/2025/01/095
Optimal neural summarization for full-field weak lensing cosmological implicit inference
Denise Lanzieri, Justine Zeghal, T. Lucas Makinen, Alexandre Boucaud, Jean-Luc Starck and François Lanusse Astronomy & Astrophysics 697 A162 (2025) https://doi.org/10.1051/0004-6361/202451535
Bayesian deep learning for cosmic volumes with modified gravity
Forecasting the power of higher order weak-lensing statistics with automatically differentiable simulations
Denise Lanzieri, François Lanusse, Chirag Modi, Benjamin Horowitz, Joachim Harnois-Déraps and Jean-Luc Starck Astronomy & Astrophysics 679 A61 (2023) https://doi.org/10.1051/0004-6361/202346888
Cosmological constraints from the Subaru Hyper Suprime-Cam year 1 shear catalogue lensing convergence probability distribution function
Pier Fiedorowicz, Eduardo Rozo, Supranta S Boruah, Chihway Chang and Marco Gatti Monthly Notices of the Royal Astronomical Society 512(1) 73 (2022) https://doi.org/10.1093/mnras/stac468
D. Munshi, R. Takahashi, J.D. McEwen, T.D. Kitching and F.R. Bouchet Journal of Cosmology and Astroparticle Physics 2022(05) 006 (2022) https://doi.org/10.1088/1475-7516/2022/05/006
Weak-lensing mass reconstruction using sparsity and a Gaussian random field
Lifting weak lensing degeneracies with a field-based likelihood
Natalia Porqueres, Alan Heavens, Daniel Mortlock and Guilhem Lavaux Monthly Notices of the Royal Astronomical Society 509(3) 3194 (2021) https://doi.org/10.1093/mnras/stab3234
Bayesian forward modelling of cosmic shear data
Natalia Porqueres, Alan Heavens, Daniel Mortlock and Guilhem Lavaux Monthly Notices of the Royal Astronomical Society 502(2) 3035 (2021) https://doi.org/10.1093/mnras/stab204
Sum of the masses of the Milky Way and M31: A likelihood-free inference approach
Likelihood-free inference with neural compression of DES SV weak lensing map statistics
Niall Jeffrey, Justin Alsing and François Lanusse Monthly Notices of the Royal Astronomical Society 501(1) 954 (2020) https://doi.org/10.1093/mnras/staa3594
Non-Gaussianity in the weak lensing correlation function likelihood – implications for cosmological parameter biases
Chien-Hao Lin, Joachim Harnois-Déraps, Tim Eifler, et al. Monthly Notices of the Royal Astronomical Society 499(2) 2977 (2020) https://doi.org/10.1093/mnras/staa2948
2D-FFTLog: efficient computation of real-space covariance matrices for galaxy clustering and weak lensing
Xiao Fang (方啸), Tim Eifler and Elisabeth Krause Monthly Notices of the Royal Astronomical Society 497(3) 2699 (2020) https://doi.org/10.1093/mnras/staa1726
Higher order spectra of weak lensing convergence maps in parametrized theories of modified gravity
Sparse Bayesian mass mapping with uncertainties: peak statistics and feature locations
M A Price, J D McEwen, X Cai and T D Kitching (for the LSST Dark Energy Science Collaboration) Monthly Notices of the Royal Astronomical Society 489(3) 3236 (2019) https://doi.org/10.1093/mnras/stz2373
On the dissection of degenerate cosmologies with machine learning
Julian Merten, Carlo Giocoli, Marco Baldi, et al. Monthly Notices of the Royal Astronomical Society 487(1) 104 (2019) https://doi.org/10.1093/mnras/stz972
The impact of baryonic physics and massive neutrinos on weak lensing peak statistics
Ian G McCarthy, Lindsay J King, Rachel Bowyer, et al. Monthly Notices of the Royal Astronomical Society 488(3) 3340 (2019) https://doi.org/10.1093/mnras/stz1882
Distinguishing standard and modified gravity cosmologies with machine learning