Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Hybrid summary statistics: neural weak lensing inference beyond the power spectrum

T. Lucas Makinen, Alan Heavens, Natalia Porqueres, Tom Charnock, Axel Lapel and Benjamin D. Wandelt
Journal of Cosmology and Astroparticle Physics 2025 (01) 095 (2025)
https://doi.org/10.1088/1475-7516/2025/01/095

Optimal neural summarization for full-field weak lensing cosmological implicit inference

Denise Lanzieri, Justine Zeghal, T. Lucas Makinen, Alexandre Boucaud, Jean-Luc Starck and François Lanusse
Astronomy & Astrophysics 697 A162 (2025)
https://doi.org/10.1051/0004-6361/202451535

Bayesian deep learning for cosmic volumes with modified gravity

Jorge Enrique García-Farieta, Héctor J. Hortúa and Francisco-Shu Kitaura
Astronomy & Astrophysics 684 A100 (2024)
https://doi.org/10.1051/0004-6361/202347929

Theoretical wavelet ℓ1-norm from one-point probability density function prediction

Vilasini Tinnaneri Sreekanth, Sandrine Codis, Alexandre Barthelemy and Jean-Luc Starck
Astronomy & Astrophysics 691 A80 (2024)
https://doi.org/10.1051/0004-6361/202450061

Starlet higher order statistics for galaxy clustering and weak lensing

Virginia Ajani, Joachim Harnois-Déraps, Valeria Pettorino and Jean-Luc Starck
Astronomy & Astrophysics 672 L10 (2023)
https://doi.org/10.1051/0004-6361/202245510

Forecasting the power of higher order weak-lensing statistics with automatically differentiable simulations

Denise Lanzieri, François Lanusse, Chirag Modi, Benjamin Horowitz, Joachim Harnois-Déraps and Jean-Luc Starck
Astronomy & Astrophysics 679 A61 (2023)
https://doi.org/10.1051/0004-6361/202346888

Cosmological constraints from the Subaru Hyper Suprime-Cam year 1 shear catalogue lensing convergence probability distribution function

Leander Thiele, Gabriela A. Marques, Jia Liu and Masato Shirasaki
Physical Review D 108 (12) (2023)
https://doi.org/10.1103/PhysRevD.108.123526

KaRMMa – kappa reconstruction for mass mapping

Pier Fiedorowicz, Eduardo Rozo, Supranta S Boruah, Chihway Chang and Marco Gatti
Monthly Notices of the Royal Astronomical Society 512 (1) 73 (2022)
https://doi.org/10.1093/mnras/stac468

Weak-lensing mass reconstruction using sparsity and a Gaussian random field

J.-L. Starck, K. E. Themelis, N. Jeffrey, A. Peel and F. Lanusse
Astronomy & Astrophysics 649 A99 (2021)
https://doi.org/10.1051/0004-6361/202039451

Lifting weak lensing degeneracies with a field-based likelihood

Natalia Porqueres, Alan Heavens, Daniel Mortlock and Guilhem Lavaux
Monthly Notices of the Royal Astronomical Society 509 (3) 3194 (2021)
https://doi.org/10.1093/mnras/stab3234

Bayesian forward modelling of cosmic shear data

Natalia Porqueres, Alan Heavens, Daniel Mortlock and Guilhem Lavaux
Monthly Notices of the Royal Astronomical Society 502 (2) 3035 (2021)
https://doi.org/10.1093/mnras/stab204

Weak-lensing Peak Statistics in Mocks by the Inverse-Gaussianization Method

Zhao Chen, Yu Yu, Xiangkun Liu and Zuhui Fan
The Astrophysical Journal 897 (1) 14 (2020)
https://doi.org/10.3847/1538-4357/ab980f

Likelihood-free inference with neural compression of DES SV weak lensing map statistics

Niall Jeffrey, Justin Alsing and François Lanusse
Monthly Notices of the Royal Astronomical Society 501 (1) 954 (2020)
https://doi.org/10.1093/mnras/staa3594

Non-Gaussianity in the weak lensing correlation function likelihood – implications for cosmological parameter biases

Chien-Hao Lin, Joachim Harnois-Déraps, Tim Eifler, et al.
Monthly Notices of the Royal Astronomical Society 499 (2) 2977 (2020)
https://doi.org/10.1093/mnras/staa2948

2D-FFTLog: efficient computation of real-space covariance matrices for galaxy clustering and weak lensing

Xiao Fang (方啸), Tim Eifler and Elisabeth Krause
Monthly Notices of the Royal Astronomical Society 497 (3) 2699 (2020)
https://doi.org/10.1093/mnras/staa1726

Higher order spectra of weak lensing convergence maps in parametrized theories of modified gravity

D Munshi and J D McEwen
Monthly Notices of the Royal Astronomical Society 498 (4) 5299 (2020)
https://doi.org/10.1093/mnras/staa2706

Nearest neighbour distributions: New statistical measures for cosmological clustering

Arka Banerjee and Tom Abel
Monthly Notices of the Royal Astronomical Society 500 (4) 5479 (2020)
https://doi.org/10.1093/mnras/staa3604

Sparse Bayesian mass mapping with uncertainties: peak statistics and feature locations

M A Price, J D McEwen, X Cai and T D Kitching (for the LSST Dark Energy Science Collaboration)
Monthly Notices of the Royal Astronomical Society 489 (3) 3236 (2019)
https://doi.org/10.1093/mnras/stz2373

On the dissection of degenerate cosmologies with machine learning

Julian Merten, Carlo Giocoli, Marco Baldi, et al.
Monthly Notices of the Royal Astronomical Society 487 (1) 104 (2019)
https://doi.org/10.1093/mnras/stz972

A preferential attachment model for the stellar initial mass function

Jessi Cisewski-Kehe, Grant Weller and Chad Schafer
Electronic Journal of Statistics 13 (1) (2019)
https://doi.org/10.1214/19-EJS1556

Parameter inference and model comparison using theoretical predictions from noisy simulations

Niall Jeffrey and Filipe B Abdalla
Monthly Notices of the Royal Astronomical Society 490 (4) 5749 (2019)
https://doi.org/10.1093/mnras/stz2930

The impact of baryonic physics and massive neutrinos on weak lensing peak statistics

Ian G McCarthy, Lindsay J King, Rachel Bowyer, et al.
Monthly Notices of the Royal Astronomical Society 488 (3) 3340 (2019)
https://doi.org/10.1093/mnras/stz1882

Weak lensing peak statistics in the era of large scale cosmological surveys

J. Fluri, T. Kacprzak, R. Sgier, A. Refregier and A. Amara
Journal of Cosmology and Astroparticle Physics 2018 (10) 051 (2018)
https://doi.org/10.1088/1475-7516/2018/10/051

Cosmological constraints from noisy convergence maps through deep learning

Janis Fluri, Tomasz Kacprzak, Alexandre Refregier, et al.
Physical Review D 98 (12) (2018)
https://doi.org/10.1103/PhysRevD.98.123518

Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: application to DES SV

N Jeffrey, F B Abdalla, O Lahav, et al.
Monthly Notices of the Royal Astronomical Society 479 (3) 2871 (2018)
https://doi.org/10.1093/mnras/sty1252

The integrated Sachs–Wolfe effect in the bulk viscous dark energy model

B Mostaghel, H Moshafi and S M S Movahed
Monthly Notices of the Royal Astronomical Society 481 (2) 1799 (2018)
https://doi.org/10.1093/mnras/sty2384

Breaking degeneracies in modified gravity with higher (than 2nd) order weak-lensing statistics

Austin Peel, Valeria Pettorino, Carlo Giocoli, Jean-Luc Starck and Marco Baldi
Astronomy & Astrophysics 619 A38 (2018)
https://doi.org/10.1051/0004-6361/201833481

3D cosmic shear: Numerical challenges, 3D lensing random fields generation, and Minkowski functionals for cosmological inference

A. Spurio Mancini, P. L. Taylor, R. Reischke, et al.
Physical Review D 98 (10) (2018)
https://doi.org/10.1103/PhysRevD.98.103507