Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Identifying Catastrophic Outlier Photometric Redshift Estimates in the COSMOS Field with Machine Learning Methods

Mitchell T. Dennis, Esther M. Hu and Lennox L. Cowie
The Astrophysical Journal 983 (2) 173 (2025)
https://doi.org/10.3847/1538-4357/adbe62

Improving Photometric Redshift Estimation for CSST Mock Catalog Using SED Templates Calibrated with Perturbation Algorithm

Yicheng Li, Liping Fu, Zhu Chen, Zhijian Luo, Wei Du, Yan Gong, Xianmin Meng, Junhao Lu, Zhirui Tang, Pengfei Chen, Shaohua Zhang, Chenggang Shu, Xingchen Zhou and Zuhui Fan
Research in Astronomy and Astrophysics 25 (5) 055021 (2025)
https://doi.org/10.1088/1674-4527/adcc7e

PICZL: Image-based photometric redshifts for AGN

W. Roster, M. Salvato, S. Krippendorf, A. Saxena, R. Shirley, J. Buchner, J. Wolf, T. Dwelly, F. E. Bauer, J. Aird, C. Ricci, R. J. Assef, S. F. Anderson, X. Liu, A. Merloni, J. Weller and K. Nandra
Astronomy & Astrophysics 692 A260 (2024)
https://doi.org/10.1051/0004-6361/202452361

CLAP

Qiufan Lin, Hengxin Ruan, Dominique Fouchez, Shupei Chen, Rui Li, Paulo Montero-Camacho, Nicola R. Napolitano, Yuan-Sen Ting and Wei Zhang
Astronomy & Astrophysics 691 A331 (2024)
https://doi.org/10.1051/0004-6361/202349113

Redshift Prediction with Images for Cosmology Using a Bayesian Convolutional Neural Network with Conformal Predictions

Evan Jones, Tuan Do, Yun Qi Li, Kevin Alfaro, Jack Singal and Bernie Boscoe
The Astrophysical Journal 974 (2) 159 (2024)
https://doi.org/10.3847/1538-4357/ad6d5a

Testing the transferability of machine learning techniques for determining photometric redshifts of galaxy catalogue populations

Lara Janiurek, Martin A Hendry and Fiona C Speirits
Monthly Notices of the Royal Astronomical Society 533 (3) 2786 (2024)
https://doi.org/10.1093/mnras/stae1901

hayate: photometric redshift estimation by hybridizing machine learning with template fitting

Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin
Monthly Notices of the Royal Astronomical Society 530 (2) 2012 (2024)
https://doi.org/10.1093/mnras/stae411

The PAU survey: photometric redshift estimation in deep wide fields

D Navarro-Gironés, E Gaztañaga, M Crocce, A Wittje, H Hildebrandt, A H Wright, M Siudek, M Eriksen, S Serrano, P Renard, E J Gonzalez, C M Baugh, L Cabayol, J Carretero, R Casas, F J Castander, I V Daza-Perilla, J De Vicente, E Fernandez, J García-Bellido, H Hoekstra, G Manzoni, R Miquel, C Padilla, E Sánchez, et al.
Monthly Notices of the Royal Astronomical Society 534 (2) 1504 (2024)
https://doi.org/10.1093/mnras/stae1686

Improving Photometric Redshift Estimation for Cosmology with LSST Using Bayesian Neural Networks

Evan Jones, Tuan Do, Bernie Boscoe, Jack Singal, Yujie Wan and Zooey Nguyen
The Astrophysical Journal 964 (2) 130 (2024)
https://doi.org/10.3847/1538-4357/ad2070

SpyderZ: An Efficient Support Vector Machine Library for Photometric Redshift Estimation and Redshift Probability Information

Vikhyat Agarwal, Jack Singal and Christine Gyure
Research Notes of the AAS 8 (5) 126 (2024)
https://doi.org/10.3847/2515-5172/ad47fb

The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning

L. Cabayol, M. Eriksen, J. Carretero, et al.
Astronomy & Astrophysics 671 A153 (2023)
https://doi.org/10.1051/0004-6361/202245027

Photometric redshift estimation of quasars with fused features from photometric data and images

Lin Yao, Bo Qiu, A-Li Luo, Jianwei Zhou, Kuang Wu, Xiao Kong, Yuanbo Liu, Guiyu Zhao and Kun Wang
Monthly Notices of the Royal Astronomical Society 523 (4) 5799 (2023)
https://doi.org/10.1093/mnras/stad1842

Photometric redshifts from SDSS images with an interpretable deep capsule network

Biprateep Dey, Brett H Andrews, Jeffrey A Newman, Yao-Yuan Mao, Markus Michael Rau and Rongpu Zhou
Monthly Notices of the Royal Astronomical Society 515 (4) 5285 (2022)
https://doi.org/10.1093/mnras/stac2105

Detection of extragalactic Ultra-compact dwarfs and Globular Clusters using Explainable AI techniques

M. Mohammadi, J. Mutatiina, T. Saifollahi and K. Bunte
Astronomy and Computing 39 100555 (2022)
https://doi.org/10.1016/j.ascom.2022.100555

Using Multivariate Imputation by Chained Equations to Predict Redshifts of Active Galactic Nuclei

Spencer James Gibson, Aditya Narendra, Maria Giovanna Dainotti, et al.
Frontiers in Astronomy and Space Sciences 9 (2022)
https://doi.org/10.3389/fspas.2022.836215

Pattern Recognition Using SVM for the Classification of the Size and Distance of Trans-Neptunian Objects Detected by Serendipitous Stellar Occultations

B. Hernández-Valencia, J. H. Castro-Chacón, M. Reyes-Ruiz, et al.
Publications of the Astronomical Society of the Pacific 134 (1038) 084501 (2022)
https://doi.org/10.1088/1538-3873/ac7f5c

Photometric redshift estimation with convolutional neural networks and galaxy images: Case study of resolving biases in data-driven methods

Q. Lin, D. Fouchez, J. Pasquet, et al.
Astronomy & Astrophysics 662 A36 (2022)
https://doi.org/10.1051/0004-6361/202142751

Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates

J. Singal, G. Silverman, E. Jones, T. Do, B. Boscoe and Y. Wan
The Astrophysical Journal 928 (1) 6 (2022)
https://doi.org/10.3847/1538-4357/ac53b5

Predicting the Redshift of Gamma-Ray Loud AGNs Using Supervised Machine Learning. II

Aditya Narendra, Spencer James Gibson, Maria Giovanna Dainotti, Malgorzata Bogdan, Agnieszka Pollo, Ioannis Liodakis, Artem Poliszczuk and Enrico Rinaldi
The Astrophysical Journal Supplement Series 259 (2) 55 (2022)
https://doi.org/10.3847/1538-4365/ac545a

Estimating galaxy redshift in radio-selected datasets using machine learning

K.J. Luken, R.P. Norris, L.A.F. Park, X.R. Wang and M.D. Filipović
Astronomy and Computing 39 100557 (2022)
https://doi.org/10.1016/j.ascom.2022.100557

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Predicting the Redshift of γ-Ray-loud AGNs Using Supervised Machine Learning

Maria Giovanna Dainotti, Malgorzata Bogdan, Aditya Narendra, Spencer James Gibson, Blazej Miasojedow, Ioannis Liodakis, Agnieszka Pollo, Trevor Nelson, Kamil Wozniak, Zooey Nguyen and Johan Larrson
The Astrophysical Journal 920 (2) 118 (2021)
https://doi.org/10.3847/1538-4357/ac1748

Nonsequential neural network for simultaneous, consistent classification, and photometric redshifts of OTELO galaxies

J. A. de Diego, J. Nadolny, Á. Bongiovanni, et al.
Astronomy & Astrophysics 655 A56 (2021)
https://doi.org/10.1051/0004-6361/202141360

Outlier Prediction and Training Set Modification to Reduce Catastrophic Outlier Redshift Estimates in Large-scale Surveys

M. Wyatt and J. Singal
Publications of the Astronomical Society of the Pacific 133 (1022) 044504 (2021)
https://doi.org/10.1088/1538-3873/abe5fb

Tests of Catastrophic Outlier Prediction in Empirical Photometric Redshift Estimation with Redshift Probability Distributions

E. Jones and J. Singal
Publications of the Astronomical Society of the Pacific 132 (1008) 024501 (2020)
https://doi.org/10.1088/1538-3873/ab54ed

The PAU Survey: Photometric redshifts using transfer learning from simulations

M Eriksen, A Alarcon, L Cabayol, et al.
Monthly Notices of the Royal Astronomical Society 497 (4) 4565 (2020)
https://doi.org/10.1093/mnras/staa2265

Photometric Redshift Estimation with Galaxy Morphology Using Self-organizing Maps

Derek Wilson, Hooshang Nayyeri, Asantha Cooray and Boris Häußler
The Astrophysical Journal 888 (2) 83 (2020)
https://doi.org/10.3847/1538-4357/ab5a79

Surveying the reach and maturity of machine learning and artificial intelligence in astronomy

Christopher J. Fluke and Colin Jacobs
WIREs Data Mining and Knowledge Discovery 10 (2) (2020)
https://doi.org/10.1002/widm.1349

A new strategy for estimating photometric redshifts of quasars

Yan-Xia Zhang, Jing-Yi Zhang, Xin Jin and Yong-Heng Zhao
Research in Astronomy and Astrophysics 19 (12) 175 (2019)
https://doi.org/10.1088/1674-4527/19/12/175

Morpho-z: improving photometric redshifts with galaxy morphology

John Y H Soo, Bruno Moraes, Benjamin Joachimi, et al.
Monthly Notices of the Royal Astronomical Society 475 (3) 3613 (2018)
https://doi.org/10.1093/mnras/stx3201

The Radio Synchrotron Background: Conference Summary and Report

J. Singal, J. Haider, M. Ajello, et al.
Publications of the Astronomical Society of the Pacific 130 (985) 036001 (2018)
https://doi.org/10.1088/1538-3873/aaa6b0