Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Comprehensive variability analysis of blazars using Fermi light curves across multiple timescales

Zahir Shah, Athar A. Dar, Sikandar Akbar, Anjum Peer, Zahoor Malik, Aaqib Manzoor, Sajad Ahanger, Javaid Tantry, Zeeshan Nazir, Debanjan Bose and Mushtaq Magray
Physical Review D 111 (12) (2025)
https://doi.org/10.1103/61tz-jk8c

TANAMI: Tracking active galactic nuclei with austral milliarcsecond interferometry

P. Benke, F. Rösch, E. Ros, M. Kadler, R. Ojha, P. G. Edwards, S. Horiuchi, L. J. Hyland, C. Phillips, J. F. H. Quick, J. Stevens, A. K. Tzioumis and S. Weston
Astronomy & Astrophysics 681 A69 (2024)
https://doi.org/10.1051/0004-6361/202347823

Identification of the optical emission detected by Gaia with radio structures in parsec-scale active galactic nucleus jets

S. Lambert, H. Sol and A. Pierron
Astronomy & Astrophysics 684 A202 (2024)
https://doi.org/10.1051/0004-6361/202347210

High energy gamma-ray sources in the VVV survey - II. The AGN counterparts

Laura G Donoso, Ana Pichel, Laura D Baravalle, M Victoria Alonso, Eduardo O Schmidt, Dante Minniti, Nicola Masetti, Leigh C Smith, Philip W Lucas, Carolina Villalon, Adrián C Rovero and Georgina Coldwell
Monthly Notices of the Royal Astronomical Society 529 (2) 1019 (2024)
https://doi.org/10.1093/mnras/stae124

Classifications of Fermi-LAT unassociated sources in multiple machine learning methods

K R Zhu, J M Chen, Y G Zheng and L Zhang
Monthly Notices of the Royal Astronomical Society 527 (2) 1794 (2023)
https://doi.org/10.1093/mnras/stad2813

Classification of Blazar Candidates of Unknown Type in Fermi 4LAC by Unanimous Voting from Multiple Machine-learning Algorithms

A. Agarwal
The Astrophysical Journal 946 (2) 109 (2023)
https://doi.org/10.3847/1538-4357/acbdfa

Classification of Fermi BCUs Using Machine Learning

Pei-yu Xiao, Rui-Feng Xie, Xiang-Tao Zeng, Yin Chen, Jia-Hui Chen, Yin-Yi Huo, Tian-Hang Liu, Jin-Liang Shi, Ying Wei, Zhuang Zhang, Zi-An Su, Hu-Bing Xiao and Jun-Hui Fan
The Astrophysical Journal 956 (1) 48 (2023)
https://doi.org/10.3847/1538-4357/acf203

Gradient boosting decision trees classification of blazars of uncertain type in the fourth Fermi-LAT catalogue

N Sahakyan, V Vardanyan and M Khachatryan
Monthly Notices of the Royal Astronomical Society 519 (2) 3000 (2022)
https://doi.org/10.1093/mnras/stac3701

Predicting the Redshift of Gamma-Ray Loud AGNs Using Supervised Machine Learning. II

Aditya Narendra, Spencer James Gibson, Maria Giovanna Dainotti, Malgorzata Bogdan, Agnieszka Pollo, Ioannis Liodakis, Artem Poliszczuk and Enrico Rinaldi
The Astrophysical Journal Supplement Series 259 (2) 55 (2022)
https://doi.org/10.3847/1538-4365/ac545a

Identifying the 3FHL Catalog. VI. Swift Observations of 3FHL Unassociated Objects with Source Classification via Machine Learning

S. Joffre, R. Silver, M. Rajagopal, M. Ajello, N. Torres-Albà, A. Pizzetti, S. Marchesi and A. Kaur
The Astrophysical Journal 940 (2) 139 (2022)
https://doi.org/10.3847/1538-4357/ac9797

The Classification of Blazar Candidates of Uncertain Types

Jun-Hui Fan, Ke-Yin Chen, Hu-Bing Xiao, Wen-Xin Yang, Jing-Chao Liang, Guo-Hai Chen, Jiang-He Yang, Yu-Hai Yuan and De-Xiang Wu
Universe 8 (8) 436 (2022)
https://doi.org/10.3390/universe8080436

First detection of VHE gamma-ray emission from TXS 1515–273, study of its X-ray variability and spectral energy distribution

V A Acciari, S Ansoldi, L A Antonelli, et al.
Monthly Notices of the Royal Astronomical Society 507 (1) 1528 (2021)
https://doi.org/10.1093/mnras/stab1994

4FGLzoo. Classifying Fermi-LAT uncertain gamma-ray sources by machine learning analysis

Graziano Chiaro, Milos Kovacevic and Giovanni La Mura
Journal of High Energy Astrophysics 29 40 (2021)
https://doi.org/10.1016/j.jheap.2020.11.002

Spectral Modeling of Flares in Long-term Gamma-Ray Light Curve of PKS 0903-57

Sandeep Kumar Mondal, Raj Prince, Nayantara Gupta and Avik Kumar Das
The Astrophysical Journal 922 (2) 160 (2021)
https://doi.org/10.3847/1538-4357/ac11fa

H i intensity mapping with MeerKAT: calibration pipeline for multidish autocorrelation observations

Jingying Wang, Mario G Santos, Philip Bull, et al.
Monthly Notices of the Royal Astronomical Society 505 (3) 3698 (2021)
https://doi.org/10.1093/mnras/stab1365

Artificial Neural Network classification of 4FGL sources

S Germani, G Tosti, P Lubrano, et al.
Monthly Notices of the Royal Astronomical Society 505 (4) 5853 (2021)
https://doi.org/10.1093/mnras/stab1748

Machine learning applied to multifrequency data in astrophysics: blazar classification

B Arsioli and P Dedin
Monthly Notices of the Royal Astronomical Society 498 (2) 1750 (2020)
https://doi.org/10.1093/mnras/staa2449

Classification of blazar candidates of uncertain type from the Fermi LAT 8-yr source catalogue with an artificial neural network

G Tosti, S Cutini, G Chiaro and M Kovačević
Monthly Notices of the Royal Astronomical Society 493 (2) 1926 (2020)
https://doi.org/10.1093/mnras/staa394

An Empirical “High-confidence” Candidate Zone for Fermi BL Lacertae Objects

Shi-Ju Kang, Kerui Zhu, Jianchao Feng, Qingwen Wu, Bin-Bin Zhang, Yue Yin, Fei-Fei Wang, Yu Liu and Tian-Yuan Zheng
The Astrophysical Journal 891 (1) 87 (2020)
https://doi.org/10.3847/1538-4357/ab722d

On the Physical Association of Fermi-LAT Blazars with Their Low-energy Counterparts

Raniere de Menezes, Raffaele D’Abrusco, Francesco Massaro, Dario Gasparrini and Rodrigo Nemmen
The Astrophysical Journal Supplement Series 248 (2) 23 (2020)
https://doi.org/10.3847/1538-4365/ab8c4e

Evaluating the Classification of Fermi BCUs from the 4FGL Catalog Using Machine Learning

Shi-Ju 世举 Kang 康, Enze Li, Wujing Ou, Kerui Zhu, Jun-Hui Fan, Qingwen Wu and Yue Yin
The Astrophysical Journal 887 (2) 134 (2019)
https://doi.org/10.3847/1538-4357/ab558b

Searching for Gamma-Ray Millisecond Pulsars: Selection of Candidates Revisited

Xuejie Dai, Zhongxiang Wang and Jithesh Vadakkumthani
Galaxies 7 (1) 31 (2019)
https://doi.org/10.3390/galaxies7010031

Identifying TeV Source Candidates among Fermi-LAT Unclassified Blazars

G. Chiaro, M. Meyer, M. Di Mauro, D. Salvetti, G. La Mura and D. J. Thompson
The Astrophysical Journal 887 (1) 104 (2019)
https://doi.org/10.3847/1538-4357/ab46ad

Evaluating the Optical Classification of Fermi BCUs Using Machine Learning

Shi-Ju Kang, Jun-Hui Fan, Weiming Mao, Qingwen Wu, Jianchao Feng and Yue Yin
The Astrophysical Journal 872 (2) 189 (2019)
https://doi.org/10.3847/1538-4357/ab0383

Unidentified gamma-ray sources as targets for indirect dark matter detection with theFermi-Large Area Telescope

Javier Coronado-Blázquez, Miguel A. Sánchez-Conde, Alberto Domínguez, et al.
Journal of Cosmology and Astroparticle Physics 2019 (07) 020 (2019)
https://doi.org/10.1088/1475-7516/2019/07/020

Classification of New X-Ray Counterparts for Fermi Unassociated Gamma-Ray Sources Using the Swift X-Ray Telescope

Amanpreet Kaur, Abraham D. Falcone, Michael D. Stroh, Jamie A. Kennea and Elizabeth C. Ferrara
The Astrophysical Journal 887 (1) 18 (2019)
https://doi.org/10.3847/1538-4357/ab4ceb

Spectral and spatial analysis of the dark matter subhalo candidates among Fermi Large Area Telescope unidentified sources

Javier Coronado-Blázquez, Miguel A. Sánchez-Conde, Mattia Di Mauro, et al.
Journal of Cosmology and Astroparticle Physics 2019 (11) 045 (2019)
https://doi.org/10.1088/1475-7516/2019/11/045

Optimizing neural network techniques in classifying Fermi-LAT gamma-ray sources

M Kovačević, G Chiaro, S Cutini and G Tosti
Monthly Notices of the Royal Astronomical Society 490 (4) 4770 (2019)
https://doi.org/10.1093/mnras/stz2920