The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
An extended catalogue of galaxy morphology using deep learning in southern photometric local universe survey data release 3
C R Bom, A Cortesi, U Ribeiro, L O Dias, K Kelkar, A V Smith Castelli, L Santana-Silva, V Lopes-Silva, T S Gonçalves, L R Abramo, E V R Lima, F Almeida-Fernandes, L Espinosa, L Li, M L Buzzo, C Mendes de Oliveira, L Sodré, F Ferrari, A Alvarez-Candal, M Grossi, E Telles, S Torres-Flores, S V Werner, A Kanaan, T Ribeiro and W Schoenell Monthly Notices of the Royal Astronomical Society 528(3) 4188 (2024) https://doi.org/10.1093/mnras/stad3956
Detection of Strongly Lensed Arcs in Galaxy Clusters with Transformers
Identification of Galaxy–Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning
E. A. Zaborowski, A. Drlica-Wagner, F. Ashmead, J. F. Wu, R. Morgan, C. R. Bom, A. J. Shajib, S. Birrer, W. Cerny, E. J. Buckley-Geer, B. Mutlu-Pakdil, P. S. Ferguson, K. Glazebrook, S. J. Gonzalez Lozano, Y. Gordon, M. Martinez, V. Manwadkar, J. O’Donnell, J. Poh, A. Riley, J. D. Sakowska, L. Santana-Silva, B. X. Santiago, D. Sluse, C. Y. Tan, et al. The Astrophysical Journal 954(1) 68 (2023) https://doi.org/10.3847/1538-4357/ace4ba
A deep learning based astronomical target detection framework for multi-colour photometry sky survey projects
The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint
J. H. O’Donnell, R. D. Wilkinson, H. T. Diehl, C. Aros-Bunster, K. Bechtol, S. Birrer, E. J. Buckley-Geer, A. Carnero Rosell, M. Carrasco Kind, L. N. da Costa, S. J. Gonzalez Lozano, R. A. Gruendl, M. Hilton, H. Lin, K. A. Lindgren, J. Martin, A. Pieres, E. S. Rykoff, I. Sevilla-Noarbe, E. Sheldon, C. Sifón, D. L. Tucker, B. Yanny, T. M. C. Abbott, M. Aguena, et al. The Astrophysical Journal Supplement Series 259(1) 27 (2022) https://doi.org/10.3847/1538-4365/ac470b
Developing a victorious strategy to the second strong gravitational lensing data challenge
Strong lens modelling: comparing and combining Bayesian neural networks and parametric profile fitting
James Pearson, Jacob Maresca, Nan Li and Simon Dye Monthly Notices of the Royal Astronomical Society 505(3) 4362 (2021) https://doi.org/10.1093/mnras/stab1547
Nonsequential neural network for simultaneous, consistent classification, and photometric redshifts of OTELO galaxies
Deep learning Blazar classification based on multifrequency spectral energy distribution data
Bernardo M O Fraga, Ulisses Barres de Almeida, Clécio R Bom, et al. Monthly Notices of the Royal Astronomical Society 505(1) 1268 (2021) https://doi.org/10.1093/mnras/stab1349
Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1
Identifying strong lenses with unsupervised machine learning using convolutional autoencoder
Robert B Metcalf, Simon Dye, Alfonso Aragón-Salamanca, et al. Monthly Notices of the Royal Astronomical Society 494(3) 3750 (2020) https://doi.org/10.1093/mnras/staa1015
Search for strong galaxy-galaxy lensing in SDSS-III BOSS
ROGER: Reconstructing orbits of galaxies in extreme regions using machine learning techniques
Martín de los Rios, Héctor J Martínez, Valeria Coenda, et al. Monthly Notices of the Royal Astronomical Society 500(2) 1784 (2020) https://doi.org/10.1093/mnras/staa3339
The use of convolutional neural networks for modelling large optically-selected strong galaxy-lens samples
Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique
Camille Avestruz, Nan Li, Hanjue 涵珏 Zhu 朱, Matthew Lightman, Thomas E. Collett and Wentao Luo The Astrophysical Journal 877(1) 58 (2019) https://doi.org/10.3847/1538-4357/ab16d9
EasyCritics – I. Efficient detection of strongly lensing galaxy groups and clusters in wide-field surveys
Sebastian Stapelberg, Mauricio Carrasco and Matteo Maturi Monthly Notices of the Royal Astronomical Society 482(2) 1824 (2019) https://doi.org/10.1093/mnras/sty2784
Derivation of NARX models by expanding activation functions in neural networks
Hidenori Inaoka, Kozue Kobayashi, Satoru Nebuya, Hiroshi Kumagai, Harukazu Tsuruta and Yutaka Fukuoka IEEJ Transactions on Electrical and Electronic Engineering 14(8) 1209 (2019) https://doi.org/10.1002/tee.22920
A Multimessenger View of Galaxies and Quasars From Now to Mid-century
CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding
François Lanusse, Quanbin Ma, Nan Li, et al. Monthly Notices of the Royal Astronomical Society 473(3) 3895 (2018) https://doi.org/10.1093/mnras/stx1665
Strong lensing cross-sections for isothermal models. I. Finite source effects in the circular case
Vanessa P de Freitas, Martin Makler and Habib S Dúmet-Montoya Monthly Notices of the Royal Astronomical Society 481(2) 2189 (2018) https://doi.org/10.1093/mnras/sty2412
Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks
C. E. Petrillo, C. Tortora, S. Chatterjee, et al. Monthly Notices of the Royal Astronomical Society 472(1) 1129 (2017) https://doi.org/10.1093/mnras/stx2052
The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations
H. T. Diehl, E. J. Buckley-Geer, K. A. Lindgren, B. Nord, H. Gaitsch, S. Gaitsch, H. Lin, S. Allam, T. E. Collett, C. Furlanetto, M. S. S. Gill, A. More, J. Nightingale, C. Odden, A. Pellico, D. L. Tucker, L. N. da Costa, A. Fausti Neto, N. Kuropatkin, M. Soares-Santos, B. Welch, Y. Zhang, J. A. Frieman, F. B. Abdalla, J. Annis, et al. The Astrophysical Journal Supplement Series 232(1) 15 (2017) https://doi.org/10.3847/1538-4365/aa8667
VICS82: The VISTA–CFHT Stripe 82 Near-infrared Survey
J. E. Geach, Y.-T. Lin, M. Makler, J.-P. Kneib, N. P. Ross, W.-H. Wang, B.-C. Hsieh, A. Leauthaud, K. Bundy, H. J. McCracken, J. Comparat, G. B. Caminha, P. Hudelot, L. Lin, L. Van Waerbeke, M. E. S. Pereira and D. Mast The Astrophysical Journal Supplement Series 231(1) 7 (2017) https://doi.org/10.3847/1538-4365/aa74b6
Finding strong lenses in CFHTLS using convolutional neural networks
C. Jacobs, K. Glazebrook, T. Collett, A. More and C. McCarthy Monthly Notices of the Royal Astronomical Society 471(1) 167 (2017) https://doi.org/10.1093/mnras/stx1492