Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Combining neural networks with galaxy light subtraction for discovering strong lenses in the Hyper Suprime-Cam Subaru Strategic Program

Yuichiro Ishida, Kenneth C Wong, Anton T Jaelani and Anupreeta More
Publications of the Astronomical Society of Japan 77 (1) 105 (2025)
https://doi.org/10.1093/pasj/psae102

Searching for Strong Gravitational Lenses

Cameron Lemon, Frédéric Courbin, Anupreeta More, Paul Schechter, Raoul Cañameras, Ludovic Delchambre, Calvin Leung, Yiping Shu, Chiara Spiniello, Yashar Hezaveh, Jonas Klüter and Richard McMahon
Space Science Reviews 220 (2) (2024)
https://doi.org/10.1007/s11214-024-01042-9

Image Deconvolution and Point-spread Function Reconstruction with STARRED: A Wavelet-based Two-channel Method Optimized for Light-curve Extraction

Martin Millon, Kevin Michalewicz, Frédéric Dux, Frédéric Courbin and Philip J. Marshall
The Astronomical Journal 168 (2) 55 (2024)
https://doi.org/10.3847/1538-3881/ad4da7

Estimation of stellar mass and star formation rate based on galaxy images

Jing Zhong, Zhijie Deng, Xiangru Li, Lili Wang, Haifeng Yang, Hui Li and Xirong Zhao
Monthly Notices of the Royal Astronomical Society 531 (1) 2011 (2024)
https://doi.org/10.1093/mnras/stae1271

Potential scientific synergies in weak lensing studies between the CSST and Euclid space probes

D. Z. Liu, X. M. Meng, X. Z. Er, et al.
Astronomy & Astrophysics 669 A128 (2023)
https://doi.org/10.1051/0004-6361/202243978

Search of strong lens systems in the Dark Energy Survey using convolutional neural networks

K. Rojas, E. Savary, B. Clément, et al.
Astronomy & Astrophysics 668 A73 (2022)
https://doi.org/10.1051/0004-6361/202142119

Deep transfer learning for blended source identification in galaxy survey data

S. Farrens, A. Lacan, A. Guinot and A. Z. Vitorelli
Astronomy & Astrophysics 657 A98 (2022)
https://doi.org/10.1051/0004-6361/202141166

Decomposition of stellar populations in CosmoDC2 galaxies using SCARLET and Deep Learning

Sándor Kunsági-Máté and István Csabai
Monthly Notices of the Royal Astronomical Society 512 (1) 1045 (2022)
https://doi.org/10.1093/mnras/stac215

The challenge of blending in large sky surveys

Peter Melchior, Rémy Joseph, Javier Sanchez, Niall MacCrann and Daniel Gruen
Nature Reviews Physics 3 (10) 712 (2021)
https://doi.org/10.1038/s42254-021-00353-y

SLITRONOMY: Towards a fully wavelet-based strong lensing inversion technique

A. Galan, A. Peel, R. Joseph, F. Courbin and J.-L. Starck
Astronomy & Astrophysics 647 A176 (2021)
https://doi.org/10.1051/0004-6361/202039363

Deblending galaxies with variational autoencoders: A joint multiband, multi-instrument approach

Bastien Arcelin, Cyrille Doux, Eric Aubourg and Cécile Roucelle
Monthly Notices of the Royal Astronomical Society 500 (1) 531 (2020)
https://doi.org/10.1093/mnras/staa3062

Recovery of 21-cm intensity maps with sparse component separation

Isabella P Carucci, Melis O Irfan and Jérôme Bobin
Monthly Notices of the Royal Astronomical Society 499 (1) 304 (2020)
https://doi.org/10.1093/mnras/staa2854

Photometry of high-redshift blended galaxies using deep learning

Alexandre Boucaud, Marc Huertas-Company, Caroline Heneka, et al.
Monthly Notices of the Royal Astronomical Society 491 (2) 2481 (2020)
https://doi.org/10.1093/mnras/stz3056

Deblending galaxy superpositions with branched generative adversarial networks

Brett E Göhre and David M Reiman
Monthly Notices of the Royal Astronomical Society 485 (2) 2617 (2019)
https://doi.org/10.1093/mnras/stz575

Sparse Lens Inversion Technique (SLIT): lens and source separability from linear inversion of the source reconstruction problem

R. Joseph, F. Courbin, J.-L. Starck and S. Birrer
Astronomy & Astrophysics 623 A14 (2019)
https://doi.org/10.1051/0004-6361/201731042

Bayesian photometric redshifts of blended sources

Daniel M Jones and Alan F Heavens
Monthly Notices of the Royal Astronomical Society 483 (2) 2487 (2019)
https://doi.org/10.1093/mnras/sty3279

Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope

Brant E. Robertson, Manda Banerji, Sarah Brough, et al.
Nature Reviews Physics 1 (7) 450 (2019)
https://doi.org/10.1038/s42254-019-0067-x

Gaussian mixture models for blended photometric redshifts

Daniel M Jones and Alan F Heavens
Monthly Notices of the Royal Astronomical Society 490 (3) 3966 (2019)
https://doi.org/10.1093/mnras/stz2687

Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2  I Chiu, J J Mohr, M McDonald, et al.
Monthly Notices of the Royal Astronomical Society 478 (3) 3072 (2018)
https://doi.org/10.1093/mnras/sty1284

Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter

Richard Massey, David Harvey, Jori Liesenborgs, Johan Richard, Stuart Stach, Mark Swinbank, Peter Taylor, Liliya Williams, Douglas Clowe, Frédéric Courbin, Alastair Edge, Holger Israel, Mathilde Jauzac, Rémy Joseph, Eric Jullo, Thomas D Kitching, Adrienne Leonard, Julian Merten, Daisuke Nagai, James Nightingale, Andrew Robertson, Luis Javier Romualdez, Prasenjit Saha, Renske Smit, Sut-Ieng Tam and Eric Tittley
Monthly Notices of the Royal Astronomical Society 477 (1) 669 (2018)
https://doi.org/10.1093/mnras/sty630

Imaging extended emission-line regions of obscured AGN with the Subaru Hyper Suprime-Cam Survey

Ai-Lei Sun, Jenny E Greene, Nadia L Zakamska, et al.
Monthly Notices of the Royal Astronomical Society 480 (2) 2302 (2018)
https://doi.org/10.1093/mnras/sty1394

A test for skewed distributions of dark matter, and a possible detection in galaxy cluster Abell 3827

Peter Taylor, Richard Massey, Mathilde Jauzac, et al.
Monthly Notices of the Royal Astronomical Society 468 (4) 5004 (2017)
https://doi.org/10.1093/mnras/stx855