Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Implementation of stacked ensemble machine learning for the detection of surrogate plutonium contamination in soil via LIBS

Paige E. Anderson, Janos I. Braun, Justin I. Borrero Negrón, Kyle C. Hartig and Ashwin P. Rao
Applied Optics 64 (16) D122 (2025)
https://doi.org/10.1364/AO.559072

Evaluation of Redshift Determination Methods for Spectral Redshift Navigation: Cross Correlation vs. Density Estimation

Gaoge Hu, Qian Zhang, Zijiang Yang, Yongmin Zhong and Bingbing Gao
IEEE Transactions on Instrumentation and Measurement 74 1 (2025)
https://doi.org/10.1109/TIM.2025.3550222

SRGAN-LSTM-Based Celestial Spectral Velocimetry Compensation Method With Solar Activity Images

Zijun Zhang, Jin Liu, Xiaolin Ning, Xiao Chen and Xin Ma
IEEE Transactions on Instrumentation and Measurement 73 1 (2024)
https://doi.org/10.1109/TIM.2024.3398112

Measuring photometric redshifts for high-redshift radio source surveys

K. J. Luken, R. P. Norris, X. R. Wang, L. A. F. Park, Y. Guo and M. D. Filipović
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2023.39

Chemical conjugation to differentiate monosaccharides by Raman and surface enhanced Raman spectroscopy

Hannah C. Schorr and Zachary D. Schultz
The Analyst 148 (9) 2035 (2023)
https://doi.org/10.1039/D2AN01762H

Maximum Correntropy Based Spectral Redshift Estimation for Spectral Redshift Navigation

Guangle Gao, Yongmin Zhong, Zhaohui Gao, Hua Zong and Shesheng Gao
IEEE Transactions on Instrumentation and Measurement 72 1 (2023)
https://doi.org/10.1109/TIM.2023.3275992

Estimating galaxy redshift in radio-selected datasets using machine learning

K.J. Luken, R.P. Norris, L.A.F. Park, X.R. Wang and M.D. Filipović
Astronomy and Computing 39 100557 (2022)
https://doi.org/10.1016/j.ascom.2022.100557

Optimizing automatic morphological classification of galaxies with machine learning and deep learning using Dark Energy Survey imaging

Ting-Yun Cheng, Christopher J Conselice, Alfonso Aragón-Salamanca, et al.
Monthly Notices of the Royal Astronomical Society 493 (3) 4209 (2020)
https://doi.org/10.1093/mnras/staa501

Preliminary Results of Using k-nearest-neighbor Regression to Estimate the Redshift of Radio-selected Data Sets

Kieran J. Luken, Ray P. Norris and Laurence A. F. Park
Publications of the Astronomical Society of the Pacific 131 (1004) 108003 (2019)
https://doi.org/10.1088/1538-3873/aaea17

Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82

J. Pasquet-Itam and J. Pasquet
Astronomy & Astrophysics 611 A97 (2018)
https://doi.org/10.1051/0004-6361/201731106

Sacrificing information for the greater good: how to select photometric bands for optimal accuracy

Kristoffer Stensbo-Smidt, Fabian Gieseke, Christian Igel, Andrew Zirm and Kim Steenstrup Pedersen
Monthly Notices of the Royal Astronomical Society 464 (3) 2577 (2017)
https://doi.org/10.1093/mnras/stw2476

PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

Michelle Lochner, Jason D. McEwen, Hiranya V. Peiris, Ofer Lahav and Max K. Winter
The Astrophysical Journal Supplement Series 225 (2) 31 (2016)
https://doi.org/10.3847/0067-0049/225/2/31