Table A.1
Fitted parameters of the RAM Hamiltonian for the CD3OD molecule
ntra | Operatorb | Par.c | Valued,e |
---|---|---|---|
22,0 | (1 − cos 3α) | (1/2) V3 | 181.1021642(55) |
22,0 | ![]() |
F | 14.75939375(90) |
21,1 | Papα | ρ | 0.8219648943(19) |
20,2 | ![]() |
A | 2.1693625(90) |
20,2 | ![]() |
B | 0.63055239(26) |
20,2 | ![]() |
C | 0.59843413(22) |
20,2 | (1/2){Pa,Pb} | 2Dab | 0.03656819(19) |
44,0 | (1 − cos 6α) | (1/2)V6 | −1.076539(13) |
44,0 | ![]() |
Fm | −0.2905843(26) × 10−2 |
43,1 | ![]() |
ρm | −0.1682007(47) × 10−2 |
42,2 | P2(1 − cos 3α) | V3J | −0.1682007(47) × 10−2 |
42,2 | ![]() |
V3K | 0.66900(17) × 10−2 |
42,2 | ![]() |
V3bc | 0.6739(49) × 10−5 |
42,2 | (1/2){Pa,Pb}(1 − cos 3α) | V3ac | 0.12557689(93) × 10−1 |
42,2 | ![]() |
FJ | −0.5466106(39) × 10−4 |
42,2 | ![]() |
FK | −0.1678373(11) × 10−1 |
42,2 | ![]() |
Fbc | −0.106428(57) × 10−3 |
42,2 | (1/2){Pa,Pc} sin 3α | D3ac | 0.1808855(27) × 10−1 |
42,2 | (1/2){Pb,Pc} sin 3α | D3bc | −0.8227(13) × 10−3 |
41,3 | P2Papα | ρJ | −0.8252990(66) × 10−4 |
41,3 | ![]() |
ρK | −0.11023649(58) × 10−1 |
41,3 | ![]() |
ρbc | −0.151933(58) × 10−3 |
41,3 | ![]() |
ρab | −0.22531(72) × 10−5 |
40,4 | P4 | −ΔJ | −0.8557802(47) × 10−6 |
40,4 | ![]() |
−ΔJK | −0.3430628(28) × 10−4 |
40,4 | ![]() |
−ΔK | −0.2715830(13) × 10−2 |
40,4 | ![]() |
−2δJ | −0.954346(64) × 10−7 |
40,4 | ![]() |
−2δK | −0.497826(92) × 10−4 |
40,4 | (1/2)P2{Pa,Pb} | DabJ | −0.48978(15) × 10−6 |
66,0 | ![]() |
Fmm | 0.21266(57) × 10−5 |
65,1 | ![]() |
ρmm | 0.13678(28) × 10−4 |
64,2 | P2(1 − cos 6α) | V6J | −0.835(18) × 10−5 |
64,2 | ![]() |
V6K | −0.1930(66) × 10−3 |
64,2 | ![]() |
V6bc | −0.31339(65) × 10−4 |
64,2 | ![]() |
FmJ | 0.12987(36) × 10−7 |
64,2 | ![]() |
FmK | 0.36055(57) × 10−4 |
64,2 | ![]() |
Fmab | 0.3193(70) × 10−8 |
64,2 | (1/2){Pa,Pc} sin 6α | D6ac | 0.3022(82) × 10−4 |
64,2 | (1/2){Pb,Pc} sin 6α | D6bc | 0.1206(12) × 10−4 |
64,2 | ![]() |
D3acm | −0.3795(11) × 10−4 |
63,3 | ![]() |
ρmJ | 0.4567(12) × 10−7 |
63,3 | ![]() |
ρmK | 0.50072(62) × 10−4 |
63,3 | ![]() |
ρmab | 0.2957(67) × 10−8 |
63,3 | ![]() |
ρ3bc | −0.26327(58) × 10−4 |
62,4 | P4(1 − cos 3α) | V3JJ | 0.96440(90) × 10−8 |
62,4 | ![]() |
V3JK | −0.38783(13) × 10−6 |
62,4 | ![]() |
V3KK | 0.43582(61) × 10−6 |
62,4 | ![]() |
V3bcJ | 0.33135(49) × 10−8 |
62,4 | ![]() |
V3bcK | 0.12328(30) × 10−5 |
62,4 | (1/2)P2{Pa,Pb}(1 − cos 3α) | V3abJ | 0.786(13) × 10−8 |
62,4 | ![]() |
V3abK | −0.29046(69) × 10−5 |
62,4 | ![]() |
V3abbc | 0.21065(20) × 10−6 |
62,4 | ![]() |
FJJ | 0.9587(98) × 10−9 |
62,4 | ![]() |
FJK | 0.6039(15) × 10−7 |
62,4 | ![]() |
FKK | 0.38758(38) × 10−4 |
62,4 | ![]() |
Fb2c2 | −0.4737(77) × 10−8 |
62,4 | (l/2)P2{Pa,Pc} sin3α | D3acJ | −0.32666(10) × 10−6 |
62,4 | ![]() |
D3acK | 0.2468o(74) × 10−4 |
62,4 | (l/2)P2{Pb,Pc} sin 3α | D3bcJ | −0.7458(16) × 10−8 |
62,4 | ![]() |
D3bcK | −0.20601(44) × 10−4 |
62,4 | ![]() |
D3acbc | 0.26239(17) × 10−6 |
62,4 | ![]() |
D3bcbc | −0.345(22) × 10−8 |
61,5 | P4Papα | ρJJ | 0.9957(92) × 10−9 |
61,5 | ![]() |
ρJK | 0.36124(82) × 10−7 |
61,5 | ![]() |
ρKK | 0.15889(13) × 10−4 |
61,5 | ![]() |
ρbcJ | 0.3819(75) × 10−9 |
61,5 | ![]() |
ρb2c2 | −0.4311(73) × 10−8 |
60,6 | P6 | ΦJ | 0.4568(18) × 10−12 |
60,6 | ![]() |
ΦJK | 0.13849(13) × 10−9 |
60,6 | ![]() |
ΦKJ | 0.8455(18) × 10−8 |
60,6 | ![]() |
ΦK | 0.26994(18) × 10−5 |
60,6 | ![]() |
2ϕJ | 0.43864(71) × 10−12 |
60,6 | ![]() |
2ϕJK | 0.3821(72) × 10−9 |
60,6 | (l/2)P4{Pa,Pb} | DabJJ | 0.901(12) × 10−12 |
88,0 | ![]() |
Fmmm | 0.4599(43) × 10−9 |
87,1 | ![]() |
ρmmm | 0.1264(l2) × 10−8 |
86,2 | P2(1 − cos 9α) | V9J | 0.1612(37) × 10−4 |
86,2 | ![]() |
V9K | 0.293(14) × 10−3 |
86,2 | ![]() |
V9bc | 0.4795(74) × 10−5 |
86,2 | ![]() |
FmmK | 0.9527(87) × 10−9 |
86,2 | (l/2){Pa,Pc} sin 9α | D9ac | −0.764(24) × 10−4 |
86,2 | ![]() |
D6acm | 0.478(13) × 10−6 |
84,4 | P4(1 − cos 6α) | V6JJ | 0.6631(69) × 10−9 |
84,4 | P4(1 − cos 6α) | V6KK | −0.382(10) × 10−7 |
84,4 | ![]() |
V6bcJ | 0.11622(71) × 10−8 |
84,4 | ![]() |
V6abK | −0.432(11) × 10−7 |
83,5 | ![]() |
ρ3bcK | 0.1901(18) × 10−8 |
82,6 | P6(1 − cos 3α) | V3JJJ | −0.1652(40) × 10−12 |
82,6 | ![]() |
V3JJK | 0.7750(28) × 10−11 |
82,6 | ![]() |
V3KKK | 0.829(47) × 10−10 |
82,6 | ![]() |
V3bcJJ | −0.2301(17) × 10−12 |
82,6 | ![]() |
V3bcJK | 0.1481(89) × 10−11 |
82,6 | ![]() |
V3b2c2J | −0.756(32) × 10−12 |
82,6 | ![]() |
V3b2c2bc | −0.22643(76) × 10−11 |
82,6 | ![]() |
V3abbcJ | −0.682(47) × 10−12 |
82,6 | ![]() |
FJJJ | 0.568o(96) × 10−15 |
82,6 | ![]() |
FKKK | −0.5406(46) × 10−9 |
82,6 | ![]() |
FbcJJ | −0.950(50) × 10−15 |
82,6 | ![]() |
Fb2c2bc | 0.1125(40) × 10−13 |
82,6 | (1/2)P4{Pa,Pc} sin 3α | D3acJJ | 0.4398(52) × 10−11 |
82,6 | ![]() |
D3acJK | 0.l247(30) × 10−10 |
82,6 | (1/2)P4{Pb,Pc} sin 3α | D3bcJJ | 0.10470(39) × 10−11 |
82,6 | ![]() |
D3bcKK | 0.1406(14) × 10−8 |
82,6 | ![]() |
D3acbcJ | −0.5366(44) × 10−11 |
82,6 | ![]() |
D3bcbcJ | 0.3186(95) × 10−12 |
82,6 | ![]() |
D3b3c3 | −0.4538(18) × 10−11 |
81,7 | ![]() |
ρKKK | −0.5405(45) × 10−9 |
80,8 | ![]() |
LK | −0.1484(12) × 10−9 |
108,2 | ![]() |
D9acm | −0.662(23) × 10−6 |
106,4 | ![]() |
V9bcK | −0.4026(56) × 10−7 |
104,6 | ![]() |
V6KKK | −0.885(51) × 10−10 |
104,6 | (l/2)P4{Pa,Pc} sin 6α | D6acJJ | −0.1390(70) × 10−11 |
104,6 | ![]() |
D6bcJK | −0.1579(29) × 10−10 |
104,6 | ![]() |
D6acbcJ | 0.595(13) × 10−11 |
102,8 | ![]() |
V3KKKK | −0.217(15) × 10−12 |
102,8 | ![]() |
V3b6c2b2c6 | 0.304(18) × 10−16 |
124,8 | ![]() |
V6KKKK | 0.222(17) × 10−12 |
Notes. an=t+r, where n is the total order of the operator, t is the order of the torsional part and r is the order of the rotational part, respectively. The ordering scheme of Nakagawa et al. (1987) is used. b {A, B, C, D, E} = ABCDE + EDCBA. {A, B, C, D} = ABCD + DCBA. {A, B, C} = ABC + CBA. {A, B} = AB + BA. The product of the operator in the second column of a given row and the parameter in the third column of that row gives the term actually used in the torsion-rotation Hamiltonian of the program, except for F, ρ and ARAM, which occur in the Hamiltonian in the form .c The parameter nomenclature is based on the subscript procedure of Xu et al. (2008). d Values of the parameters in units of cm−1, except for ρ, which is unitless.e Statistical uncertainties are given in parentheses as one standard uncertainty in units of the last digits.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.