Open Access

Table B.1

Hyperparameters, search ranges for the hyperparameters, and other properties of the searched models.

Full res. Eros res. Itokawa res.
Class Comp Class Comp Class Comp

Property Value Range
Network type conv. conv. conv. conv. conv. conv. conv., dense
Number of hidden layers 1 2 1 2 1 2 1–3
Nodes in the input 1. 401 401 78 78 64 64 fixed
Nodes/filters in hid. 1. 24 24 and 8 24 24 and 8 24 24 and 8 4–32
Nodes in the output 1. 16 10 16 10 16 10 fixed
Conv. kernel size 5 5 and 5 5 5 and 5 5 5 and 5 3–7
Hid. l. activation ELU ReLU ELU ReLU ELU ReLU ReLU, tanh, sigmoid, ELU
Out. l. activation softmax sigmoid softmax sigmoid softmax sigmoid sigmoid, softmax
Dropout rate (in.-hid.) 0.0 0.0 0.1 0.0 0.005 0.0 0.0–0.3
Dropout rate (hid.-hid.) N/A 0.3 N/A 0.3 N/A 0.3 0.0–0.5
Dropout rate (hid.-out.) 0.3 0.4 0.3 0.4 0.3 0.4 0.0–0.5
L1 trade-off parameter 0.1 0.005 0.01 0.005 0.01 0.005 0.00001–1.0
L2 trade-off parameter 0.1 0.00001 0.01 0.00001 0.01 0.00001 0.00001–1.0
Training algorithm Adam Adam Adam Adam Adam Adam Adam, SGD
Learning rate 0.0032 0.0005 0.001 0.0005 0.0013 0.0005 0.0001–1.0
Batch size 144 8 128 8 56 8 1–128
Batch norm. before activation False False False False False False True, False
Max. number of epochs 1500 2000 1500 2000 1500 2000 fixed

Notes. Class and Comp stand for classification and composition models, respectively. N/A stands for ‘not applicable’.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.