Free Access

 

 

Table 4:

MLE fits to the distribution of projected radii of the three cartesian stacked cones.

Model
$R_{\rm max}$ Vel. cut No bg   Fixed bg   Free bg

    $c_{\rm 2D}$ $P_{\rm KS}$   $c_{\rm 2D}$ $P_{\rm KS}$   $100~\hat\Sigma_{\rm bg}$ ( $\sigma(\log\hat\Sigma_{\rm bg})$) $c_{\rm 2D}$ $P_{\rm KS}$
(1) (2) (3) (4) (5)   (6) (7)   (8) (9) (10)
                       
NFW 1 N 3.46 $\pm $ 0.04 $\pm $ 0.21 <10-5   4.06 $\pm $ 0.05 $\pm $ 0.26 0.18   2.4 (0.20) 3.95 $\pm $ 0.05 $\pm $ 0.03 0.08
NFW 1 Y 3.84 $\pm $ 0.05 $\pm $ 0.19 0.059   4.10 $\pm $ 0.05 $\pm $ 0.21 0.19   1.0 (0.07) 4.06 $\pm $ 0.11 $\pm $ 0.17 0.2
Einasto 1 N 3.30 $\pm $ 0.04 $\pm $ 0.21 0.00053   3.90 $\pm $ 0.05 $\pm $ 0.25 0.46   2.6 (0.18) 3.83 $\pm $ 0.05 $\pm $ 0.08 0.27
Einasto 1 Y 3.70 $\pm $ 0.04 $\pm $ 0.18 0.32   3.96 $\pm $ 0.05 $\pm $ 0.20 0.42   0.8 (0.01) 3.87 $\pm $ 0.12 $\pm $ 0.19 0.65
NFW 1.35 N 3.21 $\pm $ 0.03 $\pm $ 0.24 <10-14   4.07 $\pm $ 0.05 $\pm $ 0.31 0.11   2.9 (0.08) 4.06 $\pm $ 0.07 $\pm $ 0.15 0.25
NFW 1.35 Y 3.78 $\pm $ 0.04 $\pm $ 0.23 0.052   4.19 $\pm $ 0.05 $\pm $ 0.26 0.06   0.5 (0.29) 3.96 $\pm $ 0.07 $\pm $ 0.16 0.22
Einasto 1.35 N 3.00 $\pm $ 0.03 $\pm $ 0.22 <10-13   3.83 $\pm $ 0.04 $\pm $ 0.28 0.32   3.3 (0.08) 3.95 $\pm $ 0.06 $\pm $ 0.16 0.52
Einasto 1.35 Y 3.59 $\pm $ 0.04 $\pm $ 0.20 0.04   3.98 $\pm $ 0.04 $\pm $ 0.22 0.46   0.9 (0.10) 3.89 $\pm $ 0.08 $\pm $ 0.17 0.73
NFW 3 N 1.67 $\pm $ 0.01 $\pm $ 0.16 0   3.82 $\pm $ 0.04 $\pm $ 0.37 0   3.8 (0.03) 4.42 $\pm $ 0.04 $\pm $ 0.45 <10-6
NFW 3 Y 3.06 $\pm $ 0.02 $\pm $ 0.12 0   4.31 $\pm $ 0.04 $\pm $ 0.17 <10-9   1.2 (0.12) 4.34 $\pm $ 0.05 $\pm $ 0.38 0.00003
Einasto 3 N 1.42 $\pm $ 0.01 $\pm $ 0.12 0   3.19 $\pm $ 0.03 $\pm $ 0.34 0   4.3 (0.05) 4.15 $\pm $ 0.03 $\pm $ 0.67 0.00003
Einasto 3 Y 2.65 $\pm $ 0.02 $\pm $ 0.10 0   3.75 $\pm $ 0.03 $\pm $ 0.12 <10-13   1.5 (0.03) 4.02 $\pm $ 0.01 $\pm $ 0.12 0.00055

Notes. Column 1: model (NFW or m=5 Einasto); Col. 2 ( $R_{\rm max}$): projected radius of the cone in which the stacked cluster is built, in units of r200; Col. 3 (v-cut): presence (Y) or absence of the velocity cut with $\kappa =2.7$ (NFW) or 2.6 (Einasto); Cols. 4-5, 6-7, 9-10: mean best-fit concentration ( c=r200/r-2) from projected radii and probability that distribution of projected radii is consistent with model using a Kolmogorov-Smirnov test ( $P_{\rm KS}$), for fits without a background (Cols. 4 and 5), with a fixed background ( $\hat\Sigma_{\rm bg} = 0.0286$ (no velocity cut) or 0.0126 (with velocity cut), Cols. 6 and 7) or a free background (Cols. 9 and 10), with best-fit value (100 times the geometric mean and error on its logarithm in parentheses) given in Col. 8. The minimum projected radius is set to 0.03 r200. For the Einasto model, we adopt the approximation to the surface density and projected number (mass) profiles given in Appendix A. The errors on c are statistical (first) and a measure of the cosmic variance term estimated by the gapper (Wainer & Thissen 1976, see Beers et al. 1990) standard deviation of the MLE values for the three projection axes.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.