Table 2:

Summary of the basic properties and fitting results.
  Input parameters Best fit parameters
Object $T_{\rm eff}$ [K] $V_{\rm gas}$ [km s-1] D [pc] $\vec{\tau} _{\lambda}$ $T_{\rm a}$ [K] $T_{\rm d}$ [K] $r_{\rm d}$ [ $^{\prime \prime }$] $Y_{\rm d}$
AQ And 2700 15 825 0.003 1200 27.9-27.5-29.1-30.5-32.4-40.4-44.8 51-48-41-35-30-14-10 1.17-1.01-1.1-1.01-1.1-2-1.5

U Ant

2800 19 260 0.002 1000 39.3 40 1.3

TT Cyg

2800 13.5 510 0.002 1000 28.3-30.6-34-36.8-45 33-26-19-14-7 1.16-1.13-1.11-1.11-2
  Models outputs    
Object $\dot{M}_{\rm a}$ [ $M_{\odot}~{\rm yr}^{-1}$] $\dot{M}\ (\times10^{-7}$) [ $M_{\odot}~{\rm yr}^{-1}$] L [$L_{\odot}$] ${M}\ (\times10^{-3}$) [$M_{\odot}$]    
AQ And $1 \times 10^{-10}$ 74-152-9-57-3-0.6-0.3 12 000 20    

U Ant

$1 \times 10^{-10}$ 7 8000 $3.8\times10^{-2}$    

TT Cyg

$1.3\times10^{-9}$ 2-3-0.2-0.1-0.09 2700 0.6    

Notes.  $T_{\rm eff}$ is the adopted effective temperature, $V_{\rm gas}$ the terminal velocity derived from CO line measurements, D the distance to the star, $\vec{\tau} _{\lambda}$ is the overall optical depth at 0.55 $\mu $m, $T_{\rm a}$ the inner temperature of the attached shell, $T_{\rm d}$ the inner dust temperature of the detached shell(s), $r_{\rm d}$ the inner radius of the detached shell(s), $Y_{\rm d}$ the detached shell(s) thickness in inner shell radius units, L the luminosity, $\dot{M}_a$ the actual mass-loss rate, $\dot{M}$ the mass-loss rate of the detached shell(s), and M the total dust and gas mass-loss.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.