Free Access

   

Table A.12:

Physical conditions and chemical abundances of the ionized gas in SBS 0948+532, SBS 1054+365, and SBS 1211+540.
Object SBS 0948+532 SBS 1054+365 SBS 1054+365ba SBS 1211+540
$T_{\rm e}$(O III) (K) $13~100 \pm 600$ $13~700 \pm 900$ $11~800 \pm 1100$ $17~100 \pm 600$
$T_{\rm e}$(O II) (K) $12~200 \pm 400$ $12~600 \pm 700$ $11~300 \pm 900$ $15~000 \pm 400$
$N_{\rm e}$ (cm-3) $250 \pm 80$ <100 $300 \pm 200$ $320 \pm 50$
12+log(O+/H+) $7.33 \pm 0.05$ $7.22 \pm 0.10$ $7.97 \pm 0.18$ $6.88 \pm 0.05$
12+log(O++/H+) $7.94 \pm 0.05$ $7.92 \pm 0.07$ $7.62 \pm 0.12$ $7.57 \pm 0.04$
12+log(O/H) $8.03 \pm0.05$ $8.00 \pm 0.07$ $8.13 \pm 0.16$ $7.65 \pm 0.04$
log(O++/O+) 0.61 $\pm$ 0.08 0.70 $\pm$ 0.11 -0.35 $\pm$ 0.20 0.69 $\pm$ 0.07
12+log(N+/H+) 5.91 $\pm$ 0.05 5.81 $\pm$ 0.08 6.49 $\pm$ 0.20 5.26 $\pm$ 0.12
12+log(N/H) 6.61 $\pm$ 0.07 6.59 $\pm$ 0.09 6.65 $\pm$ 0.21 6.03 $\pm$ 0.13
log(N/O) -1.42 $\pm$ 0.08 -1.41 $\pm$ 0.08 -1.47 $\pm$ 0.20 -1.62 $\pm$ 0.10
12+log(S+/H+) 5.43 $\pm$ 0.12 5.37 $\pm$ 0.07 5.89 $\pm$ 0.16 5.04 $\pm$ 0.06
12+log(S++/H+) 6.16 $\pm$ 0.11 5.99 $\pm$ 0.22 ... 6.02 $\pm$ 0.14
12+log(S/H) 6.34 $\pm$ 0.11 6.21 $\pm$ 0.18 ... 6.18 $\pm$ 0.12
log(S/O) -1.69 $\pm$ 0.14 -1.79 $\pm$ 0.15 ... -1.47 $\pm$ 0.14
12+log(Ne++/H+) 7.21 $\pm$ 0.09 7.25 $\pm$ 0.09 ... 6.82 $\pm$ 0.08
12+log(Ne/H) 7.30 $\pm$ 0.09 7.33 $\pm$ 0.12 ... 6.90 $\pm$ 0.08
log(Ne/O) -0.73 $\pm$ 0.12 -0.67 $\pm$ 0.11 ... -0.75 $\pm$ 0.10
12+log(Ar+2/H+) ... 5.62 $\pm$ 0.10 ... ...
12+log(Ar+3/H+) 4.79 $\pm$ 0.15 4.90 $\pm$ 0.20 ... 4.77 $\pm$ 0.22
12+log(Ar/H) ... 5.71 $\pm$ 0.17 ... ...
log(Ar/O) ... -2.29 $\pm$ 0.14 ... ...
12+log(Cl++/H+) 3.97 $\pm$ 0.18 ... ... ...
12+log(Fe++/H+) 5.64 $\pm$ 0.09 ... ... ...
12+log(Fe/H) 6.25 $\pm$ 0.09 ... ... ...
log(Fe/O) -1.78 $\pm$ 0.10 ... ... ...
12+log(He+/H+) 10.88 $\pm$ 0.04 10.88 $\pm$ 0.07 11.30: 10.90 $\pm$ 0.15
[O/H]b -0.63 $\pm$ 0.10 -0.66 $\pm$ 0.12 -0.53 -1.01 $\pm$ 0.09

a Electron temperatures estimated using empirical relations; b [O/H]=log(O/H)-log(O/H)$_{\odot}$, using 12+log(O/H) $_{\odot} = 8.66 \pm 0.05$ (Asplund et al. 2005).


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.