Free Access
   

Table 3:

Physical parameters and abundances.
Parameter knot 1 knot 2 knot 3 knot 4 knot 5 Nucleus Integrated
$\log\left(\frac{\left[\mbox{O {\sc iii}}\right]\;\lambda5007}{\mbox{H$\beta$ }}\right)$ $ 0.56\pm0.02$ $ 0.54\pm0.02$ $ 0.50\pm0.03$ $ 0.25\pm0.03$ $ 0.52\pm0.04$ $ 0.37\pm0.05$ $ 0.50\pm0.02$
$\log\left(\frac{\left[\mbox{N {\sc ii}}\right]\;\lambda6584}{\mbox{H$\alpha$ }}\right)$ $-1.04\pm0.02$ $-1.00\pm0.02$ $-1.12\pm0.05$ $-0.97\pm0.05$ $-1.18\pm0.09$ $-0.94\pm0.08$ $-1.03\pm0.02$
$\log\left(\frac{\left[\mbox{S {\sc ii}}\right]\;\lambda\lambda6717,\;6731}{\mbox{H$\alpha$ }}\right)$ $-0.79\pm0.02$ $-0.73\pm0.02$ $-0.75\pm0.03$ $-0.59\pm0.04$ $-0.77\pm0.07$ $-0.46\pm0.06$ $-0.61\pm0.02$
$N_{\rm e}$([S II]) (cm-3) 190 ${\leq}100$ ${\leq}100$ 108 ${\leq}100$ ${\leq}100$ ${\leq}100$
$T_{\rm e}$([O II]) (104 K) $1.18\pm0.07$ $1.22\pm0.07$ -- -- -- -- $1.67\pm0.30$
$T_{\rm e}$([O III]) (104 K) $1.27\pm0.10 $ $1.33\pm0.10 $ -- -- -- -- $1.96\pm0.42$
$12+\log(O/H)$ - ($T_{\rm e}$) $8.09\pm0.06 $ $8.03\pm0.06 $ -- -- -- -- $7.71\pm0.13$
$12+\log(\rm {O/H})$ - (N2) 8.26 8.28 8.23 8.30 8.20 8.31 8.27
$12+\log(\rm {O/H})$ - (O3N2) 8.22 8.24 8.21 8.34 8.19 8.31 8.24
$12+\log({\rm S}^{+}/{\rm H}^{+})$ $5.87\pm0.05$ $5.90\pm0.05$ -- -- -- -- $5.80\pm0.10$
$12+\log({\rm N}^+/{\rm H}^+)$ $6.52\pm0.05$ $6.59\pm0.05$ -- -- -- -- $6.26\pm0.11$
$\log({\rm N/O})$ $-1.29\pm0.10$ $-1.18\pm0.10$ -- -- -- -- $-1.27\pm0.21$

Notes: $T_{\rm e}$ ([O II]) derived from the relation: $T_{\rm e} {\rm ([\mbox{O {\sc ii}}])}=0.72$ $\times $ $T_{\rm e} {\rm ([\mbox{O {\sc iii}}])} + 0.26$ found by Pilyugin et al. (2006); $T_{\rm e}$ ([O III]): electron temperature measured from [O III $\lambda4363$; $12+\log(\rm {O/H})$ - ($T_{\rm e}$): direct O/H abundance derived from $T_{\rm e}$[O III]; $12+\log(\rm {O/H})$ - (N2): O/H derived from the N2 index (Pettini & Pagel 2004); the associated uncertainty is ${\pm}0.38$; $12+\log(\rm {O/H})$ - (O3N2): O/H derived from the O3N2 index (Pettini & Pagel 2004); the associated uncertainty is $\pm0.25$.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.