Table 3:

Error sources for the abundances of the chemical elements in HD 49933.
Ion abundance $\sigma_{\rm abn}$ (scatt.) $\sigma_{\rm abn}$ ( $T_{{\rm eff}}$) $\sigma_{\rm abn}$ ( \ensuremath{\log g}) $\sigma_{\rm abn}$ ( $\upsilon _{{\rm mic}}$) $\sigma_{\rm abn}$ (tot)
$\log (N/N_{\rm tot})$ (dex) (dex) (dex) (dex) (dex)
             
           
C I -3.74 0.10 -0.02 0.05 0.00 0.11
O I -3.55   -0.03 0.05 0.00 0.12
Na I -6.15 0.05 0.02 0.00 -0.01 0.05
Mg I -4.83 0.07 0.03 -0.01 -0.02 0.08
Mg II -4.73   -0.02 0.05 -0.01 0.11
Al I -6.20   0.02 0.00 0.00 0.10
Si I -4.86 0.21 0.01 0.00 -0.01 0.21
Si II -4.82 0.02 -0.03 0.05 -0.02 0.07
S I -5.23 0.07 -0.01 0.04 0.00 0.08
Ca I -6.01 0.11 0.03 -0.01 -0.05 0.12
Ca II -6.01 0.09 -0.02 0.05 -0.01 0.11
Sc II -9.24 0.12 0.02 0.05 -0.05 0.14
Ti I -7.54 0.07 0.03 0.00 -0.02 0.08
Ti II -7.42 0.12 0.01 0.05 -0.05 0.16
V I -8.50 0.13 0.04 0.00 -0.01 0.15
V II -8.47 0.23 0.01 0.05 -0.01 0.15
Cr I -6.82 0.17 0.04 0.00 -0.02 0.18
Cr II -6.61 0.17 0.00 0.05 -0.03 0.19
Mn I -7.33 0.14 0.03 0.00 -0.03 0.15
Fe I -5.04 0.06 0.04 -0.01 -0.04 0.13
Fe II -5.03 0.08 0.01 0.05 -0.05 0.12
Co I -7.49 0.10 0.03 0.00 0.00 0.10
Ni I -6.34 0.10 0.03 0.00 -0.02 0.11
Cu I -8.65 0.07 0.03 0.00 -0.01 0.08
Zn I -8.12 0.06 0.02 0.01 -0.04 0.08
Sr I -9.65   0.03 0.00 0.00 0.10
Sr II -9.50 0.04 0.01 0.06 -0.01 0.07
Y II -10.34 0.10 0.02 0.05 -0.02 0.12
Zr II -9.85 0.06 0.01 0.05 -0.01 0.08
Ba II -10.06 0.19 0.03 0.02 -0.07 0.16
La II -11.21 0.11 0.03 0.06 0.00 0.14
Ce II -10.73 0.10 0.03 0.05 0.00 0.12
Nd II -10.77 0.28 0.02 0.05 -0.01 0.28
Sm II -11.09 0.16 0.03 0.05 0.00 0.17
Eu II -11.92 0.10 0.03 0.05 0.00 0.12
Gd II -11.16 0.09 0.03 0.05 0.00 0.15
Dy II -11.36 0.15 0.03 0.05 0.00 0.16


Column 3 gives the standard deviation $\sigma_{\rm abn}$ (scatt.) of the mean abundance obtained from different spectral lines (internal scatter); a blank means that the number of spectral lines is <2, hence no internal scatter could be estimated. (Note that these values are identical to those given in Table 1). Columns 4-6 give the variation in abundance estimated by increasing $T_{{\rm eff}}$ by 50 K, \ensuremath{\log g} by 0.15 dex, and $\upsilon _{{\rm mic}}$ by 0.2 km s-1, respectively. Column 7 gives the the mean error calculated applying standard error propagation theory on the uncertainties given in the previous columns, i.e., $\sigma_{\rm abn}^2$ (tot) = $\sigma_{\rm abn}^2$ (scatt.) + $\sigma_{\rm abn}^2$ ( $T_{{\rm eff}}$) + $\sigma_{\rm abn}^2$ ( \ensuremath{\log g}) + $\sigma_{\rm abn}^2$ ( $\upsilon _{{\rm mic}}$). For the computation of $\sigma_{\rm abn}^2$ (tot) of those ions for which the internal scatter could not be measured, we have assumed a priori $\sigma_{\rm abn}~{\rm (scatt.)} = 0.10$ dex.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.