Highlight
Free Access
   

Table 9:

Using the prescriptions of Oey & Clarke (2005) we compute $p(M_{\rm max}\vert M_{\rm up})$, i.e. the probability of observing a maximum stellar mass  $M_{\rm max}$ for a given  $M_{\rm up}$.
$\Gamma^{a}$ $M_{\rm max}$ $N ({>}10~M_{\odot})^b$ $p(M_{\rm max}\vert M_{\rm up})$ $p(M_{\rm max}\vert M_{\rm up})$ $p(M_{\rm max}\vert M_{\rm up})$ $p(M_{\rm max}\vert M_{\rm up})$
               $M_{\rm up}=200~M_{\odot}$ $M_{\rm up}=150~M_{\odot}$ $M_{\rm up}=135~M_{\odot}$ $M_{\rm up}=120~M_{\odot}$
-1.1 $120~M_{\odot}$ 343 10-5 0.006 0.06 1

a Slope of the IMF within 0.4 pc; b number of stars within 0.4 pc.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.