Free Access
   

Table 8:

Differences of Balmer discontinuities $\delta D = D({\rm He/H}) - D(0.1)$ at metallicity Z = 0.02, as a function of $T_{\rm eff}$, $\log g$ and for different He/H abundance ratios. D(0.1) is for the He/H = 0.1 ratio.
    He/H = 0.2 0.5 1.0
$T_{\rm eff}$ $\log g$ $\delta D$ (dex)
12 500 3.0 +0.011 +0.007 +0.000
  3.5 -0.005 -0.006 -0.014
  4.0 -0.001 -0.004 -0.008
15 000 3.0 +0.000 -0.014 -0.020
  3.5 -0.005 -0.014 -0.029
  4.0 -0.005 -0.014 -0.029
17 000 3.0 -0.003 -0.019 -0.025
  3.5 -0.005 -0.016 -0.032
  4.0 -0.006 -0.016 -0.035
19 000 3.0 -0.003 -0.020 -0.026
  3.5 -0.004 -0.016 -0.032
  4.0 -0.006 -0.017 -0.035
21 000 3.0 -0.006 -0.019 -0.025
  3.5 -0.004 -0.014 -0.029
  4.0 -0.006 -0.016 -0.033
23 000 3.0 -0.006 -0.017 -0.022
  3.5 -0.003 -0.013 -0.026
  4.0 -0.005 -0.015 -0.029
25 000 3.0 -0.006 -0.014 -0.019
  3.5 -0.003 -0.011 -0.023
  4.0 -0.004 -0.013 -0.025
27 000 3.0 -0.004 -0.010 -0.016
  3.5 -0.002 -0.009 -0.019
  4.0 -0.003 -0.011 -0.021
30 000 3.0 -0.003 -0.005 -0.011
  3.5 -0.002 -0.007 -0.013
  4.0 -0.002 -0.008 -0.014


$\delta D=0$ for all He/H abundance ratios at $T_{\rm eff}=10~000$ K.


Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.