Free Access
 

 

Table 5:

Overview of the infrared photometry of $\ell $ Car and RS Pup from the present work and bibliography. All flux densities are corrected for interstellar extinction, except longwards of 30 $\mu $m, where it is considered negligible. The ``$\bullet $'' symbols in the ``Fit'' column indicate the photometry used for the synthetic spectrum fitting. $\lambda _0$ is the average of the half maximum extreme wavelengths of each instrument/filter combination, and $\Delta \lambda $ the half-bandwidth. $\lambda _{\rm eff}$ is the effective wavelength of the measurement considering the spectral energy distribution of the star. The ``Ap.'' column lists the effective radius of the aperture over which the flux density was measured, when this parameter was available. In the ``Ref.'' column, the references are the following: F07 = Fouqué et al. (2007), I86 = IPAC (1986), H88 = Helou & Walker (1988), K08 = present work, S04 = Smith et al. (2004). ``$\alpha $'' is the measured flux density excess, expressed in percentage of the photospheric flux (see Sect. 7.1 for details), except for RS Pup's three longest wavelengths, where it is expressed in stellar flux units, followed by ``$\times $''. The last column ``$N\sigma $'' gives the detection level in number of times the rms uncertainty.
Inst. / Band Fit $\lambda_0 \pm \Delta \lambda$ $\lambda _{\rm eff}$ Ap. Flux density Flux density Ref. $\alpha \pm \sigma(\alpha)$ $N\sigma $
System     [$\mu $m] [$\mu $m] [ $^{\prime \prime }$] [ ${\rm W/m}^{2}/\mu{\rm m}$] [Jy]   [%]  
$\mathbf{\ell}$  Car                    
Johnson B $\bullet $ $0.44 \pm 0.05$ 0.44 - $1.13 \pm 0.03$ $\times $ 10-09 $72.6 \pm 2.0$ F07 $-1.5 \pm 2.8$ -0.5
Johnson V $\bullet $ $0.55 \pm 0.04$ 0.56 - $1.80 \pm 0.05$ $\times $ 10-09 $181 \pm 5.1$ F07 $1.0 \pm 2.8$ 0.3
Cousins $I_{\rm c}$ $\bullet $ $0.75 \pm 0.11$ 0.75 - $1.47 \pm 0.04$ $\times $ 10-09 $274 \pm 7.7$ F07 $3.5 \pm 2.9$ 1.2
2MASS J $\bullet $ $1.25 \pm 0.15$ 1.22 - $7.34 \pm 0.35$ $\times $ 10-10 $382 \pm 18$ F07 $4.3 \pm 4.9$ 0.9
2MASS H $\bullet $ $1.62 \pm 0.10$ 1.65 - $3.91 \pm 0.18$ $\times $ 10-10 $342 \pm 16$ F07 $-4.5 \pm 4.7$ -1.0
2MASS K $\bullet $ $2.20 \pm 0.30$ 2.16 - $1.67 \pm 0.08$ $\times $ 10-10 $269 \pm 13$ F07 $-1.1 \pm 4.7$ -0.2
COBE* 3.5 $\mu $m   $3.57 \pm 0.49$ 3.55 $\infty$ $3.03 \pm 0.41$ $\times $ 10-11 $127 \pm 17$ S04 $8.4 \pm 15$ 0.6
IRAC I1   $3.54 \pm 0.39$ 3.55 24 $2.78 \pm 0.08$ $\times $ 10-11 $117 \pm 4$ K08 $3.1 \pm 3.1$ 1.0
IRAC I2   $4.51 \pm 0.51$ 4.49 24 $1.01 \pm 0.03$ $\times $ 10-11 $68 \pm 2$ K08 $-0.3 \pm 3.0$ -0.1
COBE* 4.9 $\mu $m   $4.93 \pm 0.37$ 4.90 $\infty$ $7.47 \pm 1.22$ $\times $ 10-12 $60 \pm 10$ S04 $11 \pm 18$ 0.6
IRAC I3   $5.73 \pm 0.70$ 5.73 24 $4.23 \pm 0.13$ $\times $ 10-12 $46.3 \pm 1.4$ K08 $4.3 \pm 3.1$ 1.4
IRAC I4   $7.89 \pm 1.44$ 7.87 24 $1.41 \pm 0.04$ $\times $ 10-12 $29.1 \pm 0.9$ K08 $8.6 \pm 3.3$ 2.6
VISIR PAH1   $8.59 \pm 0.42$ 8.60 1.3 $9.96 \pm 0.38$ $\times $ 10-13 $24.6 \pm 0.9$ K08 $14.9 \pm 4.4$ 3.4
IRAS** 12 $\mu $m   $11.5 \pm 3.5$ 11.22 25 $4.32 \pm 0.17$ $\times $ 10-13 $18.1 \pm 0.7$ I86 $17.1 \pm 4.7$ 3.6
VISIR PAH2   $11.25 \pm 0.59$ 11.25 1.3 $3.46 \pm 0.12$ $\times $ 10-13 $14.6 \pm 0.5$ K08 $16.1 \pm 4.2$ 3.9
VISIR SiC   $11.85 \pm 2.34$ 11.79 1.3 $3.00 \pm 0.07$ $\times $ 10-13 $13.9 \pm 0.3$ K08 $16.7 \pm 2.9$ 5.8
COBE* 12 $\mu $m   $12.71 \pm 4.08$ 12.35 $\infty$ $3.64 \pm 2.89$ $\times $ 10-13 $19 \pm 15$ S04 $18.6 \pm 94$ 0.2
IRAS** 25 $\mu $m   $24 \pm 6$ 23.34 25 $2.37 \pm 0.14$ $\times $ 10-14 $4.31 \pm 0.26$ I86 $25.3 \pm 7.5$ 3.4
MIPS M1   $23.5 \pm 2.7$ 23.68 35 $2.00 \pm 0.08$ $\times $ 10-14 $3.73 \pm 0.15$ K08 $23.4 \pm 4.9$ 4.7
IRAS** 60 $\mu $m   $62 \pm 17$ 59.32 60 $7.63 \pm 0.69$ $\times $ 10-16 $0.90 \pm 0.08$ I86 $51.3 \pm 14$ 3.8
MIPS M2   $70.4 \pm 9.54$ 71.42 30 $2.63 \pm 0.13$ $\times $ 10-16 $0.45 \pm 0.02$ K08 $30.5 \pm 6.5$ 4.7
RS Pup                    
Johnson B $\bullet $ $0.44 \pm 0.05$ 0.44 - $1.56 \pm 0.04$ $\times $ 10-10 $10.1 \pm 0.3$ F07 $1.5 \pm 2.8$ 0.5
Johnson V $\bullet $ $0.55 \pm 0.04$ 0.56 - $2.21 \pm 0.06$ $\times $ 10-10 $22.3 \pm 0.6$ F07 $-0.5 \pm 2.8$ -0.2
Cousins $R_{\rm c}$ $\bullet $ $0.65 \pm 0.15$ 0.65 - $2.30 \pm 0.06$ $\times $ 10-10 $32.1 \pm 0.9$ F07 $7.7 \pm 3.0$ 2.6
Cousins $I_{\rm c}$ $\bullet $ $0.75 \pm 0.11$ 0.75 - $1.76 \pm 0.05$ $\times $ 10-10 $32.8 \pm 0.9$ F07 $4.6 \pm 2.9$ 1.6
2MASS J $\bullet $ $1.25 \pm 0.15$ 1.22 - $8.40 \pm 0.40$ $\times $ 10-11 $43.7 \pm 2.1$ F07 $6.3 \pm 5.0$ 1.3
2MASS H $\bullet $ $1.62 \pm 0.10$ 1.65 - $4.28 \pm 0.20$ $\times $ 10-11 $37.4 \pm 1.8$ F07 $-3.0 \pm 4.6$ -0.7
2MASS K $\bullet $ $2.20 \pm 0.30$ 2.16 - $1.82 \pm 0.09$ $\times $ 10-11 $29.4 \pm 1.4$ F07 $0.9 \pm 4.8$ 0.2
IRAC I1   $3.54 \pm 0.39$ 3.55 6.1 $3.41 \pm 0.10$ $\times $ 10-12 $14.3 \pm 0.4$ K08 $19.2 \pm 3.6$ 5.4
IRAC I2   $4.51 \pm 0.51$ 4.49 6.1 $1.31 \pm 0.04$ $\times $ 10-12 $8.82 \pm 0.26$ K08 $20.8 \pm 3.6$ 5.7
IRAC I3   $5.73 \pm 0.70$ 5.73 6.1 $5.16 \pm 0.16$ $\times $ 10-13 $5.22 \pm 0.17$ K08 $18.7 \pm 3.6$ 5.3
IRAC I4   $7.89 \pm 1.44$ 7.87 6.1 $1.49 \pm 0.05$ $\times $ 10-13 $3.08 \pm 0.09$ K08 $8.2 \pm 3.2$ 2.5
VISIR PAH1   $8.59 \pm 0.42$ 8.60 1.3 $1.03 \pm 0.02$ $\times $ 10-13 $2.53 \pm 0.06$ K08 $11.4 \pm 2.5$ 4.5
IRAS** 12 $\mu $m   $11.5 \pm 3.5$ 11.22 25 $5.15 \pm 0.36$ $\times $ 10-14 $2.16 \pm 0.15$ I86 $31 \pm 9.2$ 3.4
VISIR PAH2   $11.25 \pm 0.59$ 11.27 1.3 $3.76 \pm 0.16$ $\times $ 10-14 $1.59 \pm 0.16$ K08 $18.8 \pm 5.2$ 3.6
IRAS** 25 $\mu $m   $24 \pm 6$ 23.34 25 $3.96 \pm 0.28$ $\times $ 10-15 $0.72 \pm 0.05$ I86 $96 \pm 14$ 7.0
MIPS M1   $23.5 \pm 2.7$ 23.68 180 $4.21 \pm 0.17$ $\times $ 10-15 $0.79 \pm 0.03$ K08 $145 \pm 9.8$ 15
IRAS 60 $\mu $m   $62 \pm 17$ 59.32 $\infty$ $1.19 \pm 0.26$ $\times $ 10-14 $13.9 \pm 3.1$ H88 $220 \pm 49\times$ 4.5
MIPS*** M2   $70.4 \pm 9.5$ 71.42 $\infty$ $9.94 \pm 0.50$ $\times $ 10-15 $16.9 \pm 0.9$ K08 $463 \pm 23\times$ 20
IRAS 100 $\mu $m   $103 \pm 18$ 100.3 $\infty$ $7.87 \pm 1.57$ $\times $ 10-15 $26.4 \pm 5.3$ H88 $1~430 \pm 290\times$ 5
* The angular resolution of COBE/DIRBE is $\approx$$0.7^\circ$, its aperture is thus considered as infinitely large.
** The IRAS Point Source Catalogue (IPAC 1986) apertures were taken as the 80% encircled energy from Beichman et al. (1988).
*** The MIPS/M2 flux density of RS Pup's CSE is the integral of the Gaussian profile adjusted in Sect. 3.3.

Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.