Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Propagation of Waves in Weakly Ionized Two-fluid Plasmas. I. Small-amplitude Alfvénic Waves

David Martínez-Gómez
The Astrophysical Journal 982 (1) 4 (2025)
https://doi.org/10.3847/1538-4357/adb713

Magnetoacoustic waves in a partially ionized astrophysical plasma with the thermal misbalance: A two-fluid approach

N. E. Molevich, S. Yu. Pichugin and D. S. Riashchikov
Physics of Plasmas 31 (4) (2024)
https://doi.org/10.1063/5.0201945

Magnetohydrodynamic waves in the partially ionized solar plasma

Roberto Soler
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2272) (2024)
https://doi.org/10.1098/rsta.2023.0223

The influence of thermal pressure gradients and ionization (im)balance on the ambipolar diffusion and charge-neutral drifts

M. M. Gómez Míguez, D. Martínez Gómez, E. Khomenko and N. Vitas
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2272) (2024)
https://doi.org/10.1098/rsta.2023.0228

Wave Conversion, Decay, and Heating in a Partially Ionized Two-fluid Magneto-atmosphere

Paul S. Cally and M. M. Gómez-Míguez
The Astrophysical Journal 946 (2) 108 (2023)
https://doi.org/10.3847/1538-4357/acbb63

The Effect of Thermal Misbalance on Slow Magnetoacoustic Waves in a Partially Ionized Prominence-Like Plasma

M. H. Ibañez and J. L. Ballester
Solar Physics 297 (11) (2022)
https://doi.org/10.1007/s11207-022-02071-9

Numerical Simulation of Longitudinal Oscillation of Filament Based on Smoothed Particle Hydrodynamics (SPH) Method

Yu Xiang Liu, Hong Fu Qiang, Xue Ren Wang, et al.
Solar Physics 297 (5) (2022)
https://doi.org/10.1007/s11207-022-01999-2

MAGNETOACOUSTIC WAVES IN PARTIALLY IONIZED HEAT-RELEASING PLASMA: COMPARISON OF ONE-FLUID AND TWO-FLUID MODELS

N. E. Molevich, S. Yu. Pichugin and D. S. Ryashchikov
Bulletin of the Lebedev Physics Institute 48 (7) 206 (2021)
https://doi.org/10.3103/S1068335621070046

Chromospheric Heating by Magnetohydrodynamic Waves and Instabilities

A. K. Srivastava, J. L. Ballester, P. S. Cally, et al.
Journal of Geophysical Research: Space Physics 126 (6) (2021)
https://doi.org/10.1029/2020JA029097

Effect of Electrical Resistivity on the Damping of Slow Sausage Modes

Michaël Geeraerts, Tom Van Doorsselaere, Shao-Xia Chen and Bo Li
The Astrophysical Journal 897 (2) 120 (2020)
https://doi.org/10.3847/1538-4357/ab9b28

The temporal behaviour of MHD waves in a partially ionized prominence-like plasma: Effect of heating and cooling

J. L. Ballester, M. Carbonell, R. Soler and J. Terradas
Astronomy & Astrophysics 609 A6 (2018)
https://doi.org/10.1051/0004-6361/201731567

Prominence oscillations: Effect of a time-dependent background temperature

J. L. Ballester, M. Carbonell, R. Soler and J. Terradas
Astronomy & Astrophysics 591 A109 (2016)
https://doi.org/10.1051/0004-6361/201527953

Effect of partial ionization on wave propagation in solar magnetic flux tubes

R. Soler, A. J. Díaz, J. L. Ballester and M. Goossens
Astronomy & Astrophysics 551 A86 (2013)
https://doi.org/10.1051/0004-6361/201220576

Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere

T. V. Zaqarashvili, M. Carbonell, J. L. Ballester and M. L. Khodachenko
Astronomy & Astrophysics 544 A143 (2012)
https://doi.org/10.1051/0004-6361/201219763

Damping of Alfvén waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach

T. V. Zaqarashvili, M. L. Khodachenko and H. O. Rucker
Astronomy & Astrophysics 534 A93 (2011)
https://doi.org/10.1051/0004-6361/201117380

Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionised prominence medium: Effect of a background flow

S. Barceló, M. Carbonell and J. L. Ballester
Astronomy & Astrophysics 525 A60 (2011)
https://doi.org/10.1051/0004-6361/201015499

Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach

T. V. Zaqarashvili, M. L. Khodachenko and H. O. Rucker
Astronomy & Astrophysics 529 A82 (2011)
https://doi.org/10.1051/0004-6361/201016326

SEISMOLOGY OF STANDING KINK OSCILLATIONS OF SOLAR PROMINENCE FINE STRUCTURES

R. Soler, I. Arregui, R. Oliver and J. L. Ballester
The Astrophysical Journal 722 (2) 1778 (2010)
https://doi.org/10.1088/0004-637X/722/2/1778

The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma

M. Carbonell, P. Forteza, R. Oliver and J. L. Ballester
Astronomy and Astrophysics 515 A80 (2010)
https://doi.org/10.1051/0004-6361/200913024

Physics of Solar Prominences: II—Magnetic Structure and Dynamics

D. H. Mackay, J. T. Karpen, J. L. Ballester, B. Schmieder and G. Aulanier
Space Science Reviews 151 (4) 333 (2010)
https://doi.org/10.1007/s11214-010-9628-0

Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionized prominence plasma: effect of helium

R. Soler, R. Oliver and J. L. Ballester
Astronomy and Astrophysics 512 A28 (2010)
https://doi.org/10.1051/0004-6361/200913478

RESONANTLY DAMPED KINK MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

R. Soler, R. Oliver and J. L. Ballester
The Astrophysical Journal 707 (1) 662 (2009)
https://doi.org/10.1088/0004-637X/707/1/662