The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
P. Oberti , A. Vienne
A&A, 397 1 (2003) 353-359
Published online: 2002-12-11
This article has been cited by the following article(s):
52 articles
Existence and stability of equilibrium points in the perturbed R3BP with Stokes drag in the binary $$\eta -$$ Cassiopeiae system
Jessica Mrumun Gyegwe and Aguda Ekele Vincent Discover Space 129 (1) (2025) https://doi.org/10.1007/s11038-025-09567-x
Exploring the equilibrium dynamics of an infinitesimal body in the perturbed problem of five bodies
Md Sanam Suraj, Elbaz I. Abouelmagd, Mani Bhushan and Md Chand Asique Chaos, Solitons & Fractals 191 115873 (2025) https://doi.org/10.1016/j.chaos.2024.115873
Nonlinear Stability of the Triangular Equilibrium Points in the Photogravitational Restricted Three-Body Problem When the Primaries are Oblate Spheroids
Shalini Suresh and Ram Krishan Sharma Astronomy Reports 69 (1) 58 (2025) https://doi.org/10.1134/S1063772925701537
Equilibrium dynamics of the restricted 3-body problem with prolate primaries
H.I. Alrebdi, Fredy L. Dubeibe and Euaggelos E. Zotos Results in Physics 48 106406 (2023) https://doi.org/10.1016/j.rinp.2023.106406
Numerical analysis of processes for the formation of moonlets confining the arcs of Neptune
Gustavo Madeira and Silvia M Giuliatti Winter Monthly Notices of the Royal Astronomical Society 513 (1) 297 (2022) https://doi.org/10.1093/mnras/stac944
On the equilibria of the restricted three-body problem with a triaxial rigid body, II: prolate primary
H.I. Alrebdi, Fredy L. Dubeibe and Euaggelos E. Zotos Results in Physics 38 105623 (2022) https://doi.org/10.1016/j.rinp.2022.105623
Nonlinear Analysis, Differential Equations, and Applications
Aguda Ekele Vincent and Angela E. Perdiou Springer Optimization and Its Applications, Nonlinear Analysis, Differential Equations, and Applications 173 131 (2021) https://doi.org/10.1007/978-3-030-72563-1_7
Mathematical Analysis in Interdisciplinary Research
Aguda Ekele Vincent and Angela E. Perdiou Springer Optimization and Its Applications, Mathematical Analysis in Interdisciplinary Research 179 987 (2021) https://doi.org/10.1007/978-3-030-84721-0_37
Computation of the perturbed locations of L1 for all Sun-Planet RTBP systems with oblate primaries
S.E. Abd El-Bar, F.A. Abd El-Salam and A.M. Al-Burkani Results in Physics 15 102659 (2019) https://doi.org/10.1016/j.rinp.2019.102659
On the classification of orbits in the three-dimensional Copenhagen problem with oblate primaries
Euaggelos E. Zotos and Jan Nagler International Journal of Non-Linear Mechanics 108 55 (2019) https://doi.org/10.1016/j.ijnonlinmec.2018.10.009
Mathematical Analysis and Applications
Vassilis S. Kalantonis, Angela E. Perdiou and Efstathios A. Perdios Springer Optimization and Its Applications, Mathematical Analysis and Applications 154 273 (2019) https://doi.org/10.1007/978-3-030-31339-5_9
Combined effects of oblateness and photogravitational perturbations on the stability of the equilibrium points in the relativistic RTBP
S.E. Abd El-Bar and F.A. Abd El-Salam Canadian Journal of Physics 97 (3) 231 (2019) https://doi.org/10.1139/cjp-2018-0187
Generalized Out-of-Plane Equilibrium Points in the Frame of Elliptic Restricted Three-Body Problem: Impact of Oblate Primary and Luminous-Triaxial Secondary
Aminu Abubakar Hussain and Aishetu Umar Advances in Astronomy 2019 1 (2019) https://doi.org/10.1155/2019/3278946
Periodic solutions around the collinear equilibrium points in the perturbed restricted three-body problem with triaxial and radiating primaries for binary HD 191408, Kruger 60 and HD 155876 systems
Jagadish Singh, A.E. Perdiou, Jessica Mrumun Gyegwe and E.A. Perdios Applied Mathematics and Computation 325 358 (2018) https://doi.org/10.1016/j.amc.2017.11.052
On the Newton–Raphson basins of convergence of the out-of-plane equilibrium points in the Copenhagen problem with oblate primaries
Euaggelos E. Zotos International Journal of Non-Linear Mechanics 103 93 (2018) https://doi.org/10.1016/j.ijnonlinmec.2018.05.002
Comparing the basins of attraction for several methods in the circular Sitnikov problem with spheroid primaries
Euaggelos E. Zotos Astrophysics and Space Science 363 (6) (2018) https://doi.org/10.1007/s10509-018-3337-7
Pulsating Zero Velocity Surfaces and Fractal Basin of Oblate Infinitesimal in the Elliptic Restricted Three Body Problem
Ashutosh Narayan, Anindita Chakraborty and Akanksha Dewangan Few-Body Systems 59 (3) (2018) https://doi.org/10.1007/s00601-018-1368-9
Investigating the Basins of Convergence in the Circular Sitnikov Three-Body Problem with Non-spherical Primaries
Euaggelos E. Zotos, Md Sanam Suraj, Rajiv Aggarwal and Satyendra Kumar Satya Few-Body Systems 59 (4) (2018) https://doi.org/10.1007/s00601-018-1393-8
Extension of the rotating dipole model with oblateness of both primaries
Xiang-Yuan Zeng, Xiang-Dong Liu and Jun-Feng Li Research in Astronomy and Astrophysics 17 (1) 2 (2017) https://doi.org/10.1088/1674-4527/17/1/2
A Study of Libration Points in Modified CR3BP Under Albedo Effect when Smaller Primary is an Ellipsoid
M. Javed Idrisi The Journal of the Astronautical Sciences 64 (4) 379 (2017) https://doi.org/10.1007/s40295-017-0115-7
Comparing the fractal basins of attraction in the Hill problem with oblateness and radiation
Euaggelos E. Zotos Astrophysics and Space Science 362 (10) (2017) https://doi.org/10.1007/s10509-017-3169-x
Xiangyuan Zeng, S. R. Vadali, Kyle T. Alfriend, Quan Hu and Hexi Baoyin (2016) https://doi.org/10.2514/6.2016-5259
Qualitative and analytical results of the bifurcation thresholds to halo orbits
Sara Bucciarelli, Marta Ceccaroni, Alessandra Celletti and Giuseppe Pucacco Annali di Matematica Pura ed Applicata (1923 -) 195 (2) 489 (2016) https://doi.org/10.1007/s10231-015-0474-2
Oblateness Effect of Saturn on Halo Orbits of L1 and L2 in Saturn-Satellites Restricted Three-Body Problem
Nishanth Pushparaj and Ram Krishan Sharma International Journal of Astronomy and Astrophysics 06 (04) 347 (2016) https://doi.org/10.4236/ijaa.2016.64029
On the stability of triangular points in the relativistic R3BP with oblate primaries and bigger radiating
Nakone Bello and Jagadish Singh Advances in Space Research 57 (2) 576 (2016) https://doi.org/10.1016/j.asr.2015.10.044
Updated rotating mass dipole with oblateness of one primary (I): equilibria in the equator and their stability
Xiangyuan Zeng, Hexi Baoyin and Junfeng Li Astrophysics and Space Science 361 (1) (2016) https://doi.org/10.1007/s10509-015-2598-7
How does the oblateness coefficient influence the nature of orbits in the restricted three-body problem?
Euaggelos E. Zotos Astrophysics and Space Science 358 (2) (2015) https://doi.org/10.1007/s10509-015-2435-z
Effect of three-body interaction on the number and location of equilibrium points of the restricted three-body problem
C. N. Douskos Astrophysics and Space Science 356 (2) 251 (2015) https://doi.org/10.1007/s10509-014-2212-4
Crash test for the Copenhagen problem with oblateness
Euaggelos E. Zotos Celestial Mechanics and Dynamical Astronomy 122 (1) 75 (2015) https://doi.org/10.1007/s10569-015-9611-x
Out-of-Plane Equilibrium Points in the Photogravitational CR3BP with Oblateness and P-R Drag
Jagadish Singh and Tajudeen Oluwafemi Amuda Journal of Astrophysics and Astronomy 36 (2) 291 (2015) https://doi.org/10.1007/s12036-015-9336-y
Relativistic restricted three body problem with oblatness and photo-gravitational corrections to triangular equilibrium points
D. A. Katour, F. A. Abd El-Salam and M. O. Shaker Astrophysics and Space Science 351 (1) 143 (2014) https://doi.org/10.1007/s10509-014-1826-x
The inner small satellites of Saturn: A variety of worlds
P.C. Thomas, J.A. Burns, M. Hedman, et al. Icarus 226 (1) 999 (2013) https://doi.org/10.1016/j.icarus.2013.07.022
Analytical and Semianalytical Treatment of the Collinear Points in the Photogravitational Relativistic RTBP
S. E. Abd El-Bar and F. A. Abd El-Salam Mathematical Problems in Engineering 2013 1 (2013) https://doi.org/10.1155/2013/794734
On ‘out of plane’ equilibrium points in the elliptic restricted three-body problem with radiating and oblate primaries
Jagadish Singh and Aishetu Umar Astrophysics and Space Science 344 (1) 13 (2013) https://doi.org/10.1007/s10509-012-1292-2
Periodic motions in the spatial Chermnykh restricted three-body problem
A. E. Perdiou, A. A. Nikaki and E. A. Perdios Astrophysics and Space Science 345 (1) 57 (2013) https://doi.org/10.1007/s10509-013-1368-7
On Sitnikov-like motions generating new kinds of 3D periodic orbits in the R3BP with prolate primaries
C. Douskos, V. Kalantonis, P. Markellos and E. Perdios Astrophysics and Space Science 337 (1) 99 (2012) https://doi.org/10.1007/s10509-011-0807-6
Oblateness effect of Saturn on periodic orbits in the Saturn-Titan restricted three-body problem
A. Safiya Beevi and R. K. Sharma Astrophysics and Space Science 340 (2) 245 (2012) https://doi.org/10.1007/s10509-012-1052-3
Motion around the out-of-plane equilibrium points of the perturbed restricted three-body problem
Jagadish Singh Astrophysics and Space Science 342 (2) 303 (2012) https://doi.org/10.1007/s10509-012-1187-2
Periodic orbits of the Hill problem with radiation and oblateness
A. E. Perdiou, E. A. Perdios and V. S. Kalantonis Astrophysics and Space Science 342 (1) 19 (2012) https://doi.org/10.1007/s10509-012-1145-z
Equilibrium points of the restricted three-body problem with equal prolate and radiating primaries, and their stability
C. N. Douskos Astrophysics and Space Science 333 (1) 79 (2011) https://doi.org/10.1007/s10509-010-0584-7
Intermediary orbits for oscillating motions
P. Oberti and B. Pocart Astrophysics and Space Science 333 (1) 71 (2011) https://doi.org/10.1007/s10509-011-0624-y
Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction
C. N. Douskos Astrophysics and Space Science 326 (2) 263 (2010) https://doi.org/10.1007/s10509-009-0213-5
The natural satellites ephemerides facility MULTI-SAT
N. V. Emel'yanov and J.-E. Arlot Astronomy & Astrophysics 487 (2) 759 (2008) https://doi.org/10.1051/0004-6361:200809790
The Sitnikov family and the associated families of 3D periodic orbits in the photogravitational RTBP with oblateness
V. S. Kalantonis, E. A. Perdios and A. E. Perdiou Astrophysics and Space Science 315 (1-4) 323 (2008) https://doi.org/10.1007/s10509-008-9838-z
Multiple Periodic Orbits in the Hill Problem with Oblate Secondary
A. E. Perdiou Earth, Moon, and Planets 103 (3-4) 105 (2008) https://doi.org/10.1007/s11038-008-9239-x
The photogravitational Hill problem with oblateness: equilibrium points and Lyapunov families
M. P. Markakis, A. E. Perdiou and C. N. Douskos Astrophysics and Space Science 315 (1-4) 297 (2008) https://doi.org/10.1007/s10509-008-9831-6
The long term stability of coorbital moons of the satellites of Saturn
Apostolos A. Christou, Fathi Namouni and Maria Helena Moreira Morais Icarus 192 (1) 106 (2007) https://doi.org/10.1016/j.icarus.2007.06.012
Numerical Determination of Homoclinic and Heteroclinic Orbits at Collinear Equilibria in the Restricted Three-Body Problem with Oblateness
V. S. Kalantonis, C. N. Douskos and E. A. Perdios Celestial Mechanics and Dynamical Astronomy 94 (2) 135 (2006) https://doi.org/10.1007/s10569-005-4441-x
Construction of theories of motion, ephemerides, and databases for natural satellites of planets
N. V. Emelyanov, J. -E. Arlot, M. I. Varfolomeev, et al. Cosmic Research 44 (2) 128 (2006) https://doi.org/10.1134/S0010952506020055
Out-of-plane equilibrium points in the restricted three-body problem with oblateness
C. N. Douskos and V. V. Markellos Astronomy & Astrophysics 446 (1) 357 (2006) https://doi.org/10.1051/0004-6361:20053828
Computation of the Liapunov Orbits in the Photogravitational RTBP with Oblateness
G. A. Tsirogiannis, C. N. Douskos and E. A. Perdios Astrophysics and Space Science 305 (4) 389 (2006) https://doi.org/10.1007/s10509-006-9171-3
THE HILL PROBLEM WITH OBLATE SECONDARY: NUMERICAL EXPLORATION
A.E. Perdiou, V.V. Markellos and C.N. Douskos Earth, Moon, and Planets 97 (1-2) 127 (2005) https://doi.org/10.1007/s11038-006-9065-y