The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
P. Molaro , S. A. Levshakov , M. Dessauges-Zavadsky , S. D'Odorico
A&A, 381 3 (2002) L64-L67
Published online: 2002-01-15
This article has been cited by the following article(s):
64 articles
Resilience and implications of adiabatic CMB cooling
Ruchika, William Giarè, Elsa M. Teixeira and Alessandro Melchiorri Physics of the Dark Universe 101999 (2025) https://doi.org/10.1016/j.dark.2025.101999
Practical applications of a relativistic theory including tensor and scalar gravitation
Hai-Chao Zhang Physical Review D 111 (8) (2025) https://doi.org/10.1103/PhysRevD.111.084030
Lorentzian correction for the evolution of the CMB temperature
A. Novais and A. L. B. Ribeiro Astrophysics 359 (2024) https://doi.org/10.54503/0571-7132-2024.67.3-359
Lorentzian Correction for the Evolution of the CMB Temperature
A. Novais and A. L. B. Ribero Astrophysics 67 (3) 348 (2024) https://doi.org/10.1007/s10511-024-09837-y
Current and future cosmological impact of microwave background temperature measurements
C.J.A.P. Martins and A.M.M. Vieira Physics of the Dark Universe 44 101494 (2024) https://doi.org/10.1016/j.dark.2024.101494
Reconstructing the early-Universe expansion and thermal history
Rui An and Vera Gluscevic Physical Review D 109 (2) (2024) https://doi.org/10.1103/PhysRevD.109.023534
Gravitational matter creation, multi-fluid cosmology and kinetic theory
S. R. G. Trevisani and J. A. S. Lima The European Physical Journal C 83 (3) (2023) https://doi.org/10.1140/epjc/s10052-023-11301-8
Dynamical dark energy can amplify the expansion rate of the Universe
Hai-Chao Zhang Physical Review D 107 (10) (2023) https://doi.org/10.1103/PhysRevD.107.103529
Cosmological Parameters from Planck Data in SU(2)CMB, Their Local ΛCDM Values, and the Modified Photon Boltzmann Equation
Ralf Hofmann, Janning Meinert and Shyam Sunder Balaji Annalen der Physik 535 (7) (2023) https://doi.org/10.1002/andp.202200517
Frequency–Redshift Relation of the Cosmic Microwave Background
Ralf Hofmann and Janning Meinert Astronomy 2 (4) 286 (2023) https://doi.org/10.3390/astronomy2040019
Deep learning of CMB radiation temperature
Mehmet Salti and Evrim Ersin Kangal Annals of Physics 439 168799 (2022) https://doi.org/10.1016/j.aop.2022.168799
Cosmological impact of microwave background temperature measurements
L. Gelo, C.J.A.P. Martins, N. Quevedo and A.M.M. Vieira Physics Letters B 835 137570 (2022) https://doi.org/10.1016/j.physletb.2022.137570
Microwave background temperature at a redshift of 6.34 from H2O absorption
Dominik A. Riechers, Axel Weiss, Fabian Walter, et al. Nature 602 (7895) 58 (2022) https://doi.org/10.1038/s41586-021-04294-5
Constraining Cosmic Microwave Background Temperature Evolution With Sunyaev–Zel’Dovich Galaxy Clusters from the Atacama Cosmology Telescope
Yunyang 云炀 Li 李, Adam D. Hincks, Stefania Amodeo, Elia S. Battistelli, J. Richard Bond, Erminia Calabrese, Steve K. Choi, Mark J. Devlin, Jo Dunkley, Simone Ferraro, Vera Gluscevic, Yilun Guan, Mark Halpern, Matt Hilton, Renee Hlozek, Tobias A. Marriage, Jeff McMahon, Kavilan Moodley, Sigurd Naess, Federico Nati, Michael D. Niemack, John Orlowski-Scherer, Lyman Page, Bruce Partridge, Maria Salatino, et al . The Astrophysical Journal 922 (2) 136 (2021) https://doi.org/10.3847/1538-4357/ac26b6
Evolution of CMB temperature in a Chaplygin gas model from deep learning perspective
M. Salti, E.E. Kangal and O. Aydogdu Astronomy and Computing 37 100504 (2021) https://doi.org/10.1016/j.ascom.2021.100504
Machine learning meets the redshift evolution of the CMB temperature
Rubén Arjona Journal of Cosmology and Astroparticle Physics 2020 (08) 009 (2020) https://doi.org/10.1088/1475-7516/2020/08/009
Cosmic transparency and acceleration
R. F. L. Holanda, S. H. Pereira and Deepak Jain Physical Review D 97 (2) (2018) https://doi.org/10.1103/PhysRevD.97.023538
The status of varying constants: a review of the physics, searches and implications
C J A P Martins Reports on Progress in Physics 80 (12) 126902 (2017) https://doi.org/10.1088/1361-6633/aa860e
Tests and Problems of the Standard Model in Cosmology
Martín López-Corredoira Foundations of Physics 47 (6) 711 (2017) https://doi.org/10.1007/s10701-017-0073-8
Scale-invariant Cosmology and CMB Temperatures as a Function of Redshifts
Andre Maeder The Astrophysical Journal 847 (1) 65 (2017) https://doi.org/10.3847/1538-4357/aa88cf
Analysis of the Amplitude of the Sunyaev–Zel’dovich Effect out to Redshift z = 0.8
M. López-Corredoira, C. M. Gutiérrez and R. T. Génova-Santos The Astrophysical Journal 840 (2) 62 (2017) https://doi.org/10.3847/1538-4357/aa6d81
Gamma-Ray Bursts
Patrick Petitjean, F. Y. Wang, X. F. Wu and J. J. Wei Space Sciences Series of ISSI, Gamma-Ray Bursts 61 197 (2016) https://doi.org/10.1007/978-94-024-1279-6_9
GRBs and Fundamental Physics
Patrick Petitjean, F. Y. Wang, X. F. Wu and J. J. Wei Space Science Reviews 202 (1-4) 195 (2016) https://doi.org/10.1007/s11214-016-0235-6
Testing distance duality with CMB anisotropies
Syksy Räsänen, Jussi Väliviita and Ville Kosonen Journal of Cosmology and Astroparticle Physics 2016 (04) 050 (2016) https://doi.org/10.1088/1475-7516/2016/04/050
Subpercent constraints on the cosmological temperature evolution
A. Avgoustidis, R. T. Génova-Santos, G. Luzzi and C. J. A. P. Martins Physical Review D 93 (4) (2016) https://doi.org/10.1103/PhysRevD.93.043521
Constraining the evolution of the CMB temperature with SZ measurements from Planck data
G. Luzzi, R.T. Génova-Santos, C.J.A.P. Martins, M. De Petris and L. Lamagna Journal of Cosmology and Astroparticle Physics 2015 (09) 011 (2015) https://doi.org/10.1088/1475-7516/2015/09/011
Cosmic microwave background radiation temperature in a dissipative universe
Nobuyoshi Komatsu and Shigeo Kimura Physical Review D 92 (4) (2015) https://doi.org/10.1103/PhysRevD.92.043507
Measurement of theTCMBevolution from the Sunyaev-Zel’dovich effect
G. Hurier, N. Aghanim, M. Douspis and E. Pointecouteau Astronomy & Astrophysics 561 A143 (2014) https://doi.org/10.1051/0004-6361/201322632
DLA abundances in the CUBES’s spectral window
Paolo Molaro Astrophysics and Space Science 354 (1) 75 (2014) https://doi.org/10.1007/s10509-014-2017-5
Consistency tests of the stability of fundamental couplings and unification scenarios
M. C. Ferreira, O. Frigola, C. J. A. P. Martins, A. M. R. V. L. Monteiro and J. Solà Physical Review D 89 (8) (2014) https://doi.org/10.1103/PhysRevD.89.083011
Constraints on the CMB temperature evolution using multiband measurements of the Sunyaev–Zel'dovich effect with the South Pole Telescope
A. Saro, J. Liu, J. J. Mohr, et al. Monthly Notices of the Royal Astronomical Society 440 (3) 2610 (2014) https://doi.org/10.1093/mnras/stu575
ALCOCK-PACZYŃSKI COSMOLOGICAL TEST
M. López-Corredoira The Astrophysical Journal 781 (2) 96 (2014) https://doi.org/10.1088/0004-637X/781/2/96
Breaking of the equivalence principle in the electromagnetic sector and its cosmological signatures
Aurélien Hees, Olivier Minazzoli and Julien Larena Physical Review D 90 (12) (2014) https://doi.org/10.1103/PhysRevD.90.124064
A precise and accurate determination of the cosmic microwave background temperature atz= 0.89
S. Muller, A. Beelen, J. H. Black, et al. Astronomy & Astrophysics 551 A109 (2013) https://doi.org/10.1051/0004-6361/201220613
Constraints on the CMB temperature-redshift dependence from SZ and distance measurements
A Avgoustidis, G Luzzi, C.J.A.P Martins and A.M.R.V.L Monteiro Journal of Cosmology and Astroparticle Physics 2012 (02) 013 (2012) https://doi.org/10.1088/1475-7516/2012/02/013
Limits on decaying dark energy density models from the CMB temperature-redshift relation
Philippe Jetzer and Crescenzo Tortora Journal of Physics: Conference Series 354 012009 (2012) https://doi.org/10.1088/1742-6596/354/1/012009
Fundamental Questions of Practical Cosmology
Yurij Baryshev and Pekka Teerikorpi Astrophysics and Space Science Library, Fundamental Questions of Practical Cosmology 383 157 (2012) https://doi.org/10.1007/978-94-007-2379-5_8
Constraints on a Vacuum Energy from Both SNIa and CMB Temperature Observations
Riou Nakamura, E. P. Berni Ann Thushari, Mikio Ikeda and Masa-Aki Hashimoto Advances in Astronomy 2012 1 (2012) https://doi.org/10.1155/2012/528243
Limits on decaying dark energy density models from the CMB temperature–redshift relation
Philippe Jetzer, Denis Puy, Monique Signore and Crescenzo Tortora General Relativity and Gravitation 43 (4) 1083 (2011) https://doi.org/10.1007/s10714-010-1091-4
Molecules atz= 0.89
S. Muller, A. Beelen, M. Guélin, et al. Astronomy & Astrophysics 535 A103 (2011) https://doi.org/10.1051/0004-6361/201117096
Constraints from the CMB temperature and other common observational data sets on variable dark energy density models
Philippe Jetzer and Crescenzo Tortora Physical Review D 84 (4) (2011) https://doi.org/10.1103/PhysRevD.84.043517
The evolution of the cosmic microwave background temperature
P. Noterdaeme, P. Petitjean, R. Srianand, C. Ledoux and S. López Astronomy & Astrophysics 526 L7 (2011) https://doi.org/10.1051/0004-6361/201016140
THE TOLMAN SURFACE BRIGHTNESS TEST FOR THE REALITY OF THE EXPANSION. V. PROVENANCE OF THE TEST AND A NEW REPRESENTATION OF THE DATA FOR THREE REMOTEHUBBLE SPACE TELESCOPEGALAXY CLUSTERS
Allan Sandage The Astronomical Journal 139 (2) 728 (2010) https://doi.org/10.1088/0004-6256/139/2/728
ANGULAR SIZE TEST ON THE EXPANSION OF THE UNIVERSE
MARTÍN LÓPEZ-CORREDOIRA International Journal of Modern Physics D 19 (03) 245 (2010) https://doi.org/10.1142/S0218271810016397
Lyα absorbers in motion: consequences of gravitational lensing for the cosmological redshift drift experiment★
Madhura Killedar and Geraint F. Lewis Monthly Notices of the Royal Astronomical Society 402 (1) 650 (2010) https://doi.org/10.1111/j.1365-2966.2009.15913.x
REDSHIFT DEPENDENCE OF THE COSMIC MICROWAVE BACKGROUND TEMPERATURE FROM SUNYAEV-ZELDOVICH MEASUREMENTS
G. Luzzi, M. Shimon, L. Lamagna, et al. The Astrophysical Journal 705 (2) 1122 (2009) https://doi.org/10.1088/0004-637X/705/2/1122
The physics of the intergalactic medium
Avery A. Meiksin Reviews of Modern Physics 81 (4) 1405 (2009) https://doi.org/10.1103/RevModPhys.81.1405
The density, the cosmic microwave background, and the proton-to-electron mass ratio
in a cloud at redshift 0.9
C. Henkel, K. M. Menten, M. T. Murphy, et al. Astronomy & Astrophysics 500 (2) 725 (2009) https://doi.org/10.1051/0004-6361/200811475
Chemistry of heavy elements in the Dark Ages
P. Vonlanthen, T. Rauscher, C. Winteler, et al. Astronomy & Astrophysics 503 (1) 47 (2009) https://doi.org/10.1051/0004-6361/200811297
Science with the VLT in the ELT Era
Valentina D’Odorico and Miroslava Dessauges-Zavadsky Astrophysics and Space Science Proceedings, Science with the VLT in the ELT Era 37 (2009) https://doi.org/10.1007/978-1-4020-9190-2_7
First detection of CO in a high-redshift damped Lyman-α system
R. Srianand, P. Noterdaeme, C. Ledoux and P. Petitjean Astronomy & Astrophysics 482 (3) L39 (2008) https://doi.org/10.1051/0004-6361:200809727
Cosmic microwave background constraints on a decaying cosmological term related to the thermal evolution
Riou Nakamura, Masa-aki Hashimoto and Kiyotomo Ichiki Physical Review D 77 (12) (2008) https://doi.org/10.1103/PhysRevD.77.123511
The Road to Galaxy Formation
Springer Praxis Books, The Road to Galaxy Formation 139 (2007) https://doi.org/10.1007/978-3-540-72535-0_7
S–Z constraints on the dependence of the CMB temperature on redshift
L. Lamagna, E.S. Battistelli, S. De Gregori, et al. New Astronomy Reviews 51 (3-4) 381 (2007) https://doi.org/10.1016/j.newar.2006.11.041
The standard cosmological model
D Scott Canadian Journal of Physics 84 (6-7) 419 (2006) https://doi.org/10.1139/p06-066
Probing the cosmic microwave background temperature
using the Sunyaev-Zeldovich effect
C. Horellou, M. Nord, D. Johansson and A. Lévy Astronomy & Astrophysics 441 (2) 435 (2005) https://doi.org/10.1051/0004-6361:20053090
Thermal balance in decaying $\mathsf{\Lambda}$ cosmologies
D. Puy Astronomy & Astrophysics 422 (1) 1 (2004) https://doi.org/10.1051/0004-6361:20040256
The Physics of the Early Universe
Robert H. Sanders Lecture Notes in Physics, The Physics of the Early Universe 653 105 (2004) https://doi.org/10.1007/978-3-540-31535-3_4
The cosmological constant and dark energy
P. J. E. Peebles and Bharat Ratra Reviews of Modern Physics 75 (2) 559 (2003) https://doi.org/10.1103/RevModPhys.75.559
Effects of a Decaying Cosmological Term on the Formation of Molecules and First Objects
M. Hashimoto, T. Kamikawa and K. Arai The Astrophysical Journal 598 (1) 13 (2003) https://doi.org/10.1086/378882
Cii* Absorption in Damped Lyα Systems. II. A New Window on the Star Formation History of the Universe
Arthur M. Wolfe, Eric Gawiser and Jason X. Prochaska The Astrophysical Journal 593 (1) 235 (2003) https://doi.org/10.1086/376521
Fine-structure diagnostics of neutral carbon
toward HE 0515-4414
R. Quast, R. Baade and D. Reimers Astronomy & Astrophysics 386 (3) 796 (2002) https://doi.org/10.1051/0004-6361:20020342
Two-phase equilibrium and molecular hydrogen formation in damped Lyman-alpha systems
H. Liszt Astronomy & Astrophysics 389 (2) 393 (2002) https://doi.org/10.1051/0004-6361:20020646
Cosmic Microwave Background Temperature at Galaxy Clusters
E. S. Battistelli, M. De Petris, L. Lamagna, et al. The Astrophysical Journal 580 (2) L101 (2002) https://doi.org/10.1086/345589