The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
The advancements of astrochemistry models of molecular clouds
继兴 葛, 文仲 蔡, 霞 张, 芳芳 李, 晶晶 王, Ji-Xing Ge, Wen-Zhong Cai, Xia Zhang, Fang-Fang Li and Jing-Jing Wang Chinese Science Bulletin (2025) https://doi.org/10.1360/TB-2024-1141
NeuralPDR: neural differential equations as surrogate models for photodissociation regions
Gijs Vermariën, Thomas G Bisbas, Serena Viti, Yue Zhao, Xuefei Tang and Rahul Ravichandran Machine Learning: Science and Technology 6(2) 025069 (2025) https://doi.org/10.1088/2632-2153/ade4ee
BEETROOTS: Spatially regularized Bayesian inference of physical parameter maps. Application to Orion
Pierre Palud, Emeric Bron, Pierre Chainais, Franck Le Petit, Pierre-Antoine Thouvenin, Miriam G. Santa-Maria, Javier R. Goicoechea, David Languignon, Maryvonne Gerin, Jérôme Pety, Ivana Bešlić, Simon Coudé, Lucas Einig, Helena Mazurek, Jan H. Orkisz, Léontine Ségal, Antoine Zakardjian, Sébastien Bardeau, Karine Demyk, Victor de Souza Magalhães, Pierre Gratier, Viviana V. Guzmán, Annie Hughes, François Levrier, Jacques Le Bourlot, et al. Astronomy & Astrophysics 698 A311 (2025) https://doi.org/10.1051/0004-6361/202554266
Applications of machine learning in astrochemistry
MACE: a Machine-learning Approach to Chemistry Emulation
Silke Maes, Frederik De Ceuster, Marie Van de Sande and Leen Decin Journal of Open Source Software 10(108) 7148 (2025) https://doi.org/10.21105/joss.07148
Nebular emission from composite star-forming galaxies – I. A novel modelling approach
Christophe Morisset, Stéphane Charlot, Sebastián F Sánchez, Carlos Espinosa-Ponce, Eric Barat and Thomas Dautremer Monthly Notices of the Royal Astronomical Society 538(3) 1884 (2025) https://doi.org/10.1093/mnras/staf143
Emulating the interstellar medium chemistry with neural operators
A Asensio Ramos, C Westendorp Plaza, D Navarro-Almaida, P Rivière-Marichalar, V Wakelam and A Fuente Monthly Notices of the Royal Astronomical Society 531(4) 4930 (2024) https://doi.org/10.1093/mnras/stae1432
Quantifying the informativity of emission lines to infer physical conditions in giant molecular clouds
Lucas Einig, Pierre Palud, Antoine Roueff, Jérôme Pety, Emeric Bron, Franck Le Petit, Maryvonne Gerin, Jocelyn Chanussot, Pierre Chainais, Pierre-Antoine Thouvenin, David Languignon, Ivana Bešlić, Simon Coudé, Helena Mazurek, Jan H. Orkisz, Miriam G. Santa-Maria, Léontine Ségal, Antoine Zakardjian, Sébastien Bardeau, Karine Demyk, Victor de Souza Magalhães, Javier R. Goicoechea, Pierre Gratier, Viviana V. Guzmán, Annie Hughes, et al. Astronomy & Astrophysics 691 A109 (2024) https://doi.org/10.1051/0004-6361/202451588
Disentangling CO Chemistry in a Protoplanetary Disk Using Explanatory Machine-learning Techniques
Amina Diop, L. Ilsedore Cleeves, Dana E. Anderson, Jamila Pegues and Adele Plunkett The Astrophysical Journal 962(1) 90 (2024) https://doi.org/10.3847/1538-4357/ad11ed
MACE: A Machine-learning Approach to Chemistry Emulation
Using a neural network approach to accelerate disequilibrium chemistry calculations in exoplanet atmospheres
Julius L A M Hendrix, Amy J Louca and Yamila Miguel Monthly Notices of the Royal Astronomical Society 524(1) 643 (2023) https://doi.org/10.1093/mnras/stad1763
De-noising of galaxy optical spectra with autoencoders
M Scourfield, A Saintonge, D de Mijolla and S Viti Monthly Notices of the Royal Astronomical Society 526(2) 3037 (2023) https://doi.org/10.1093/mnras/stad2709
Neural network-based emulation of interstellar medium models
Pierre Palud, Lucas Einig, Franck Le Petit, Émeric Bron, Pierre Chainais, Jocelyn Chanussot, Jérôme Pety, Pierre-Antoine Thouvenin, David Languignon, Ivana Bešlić, Miriam G. Santa-Maria, Jan H. Orkisz, Léontine E. Ségal, Antoine Zakardjian, Sébastien Bardeau, Maryvonne Gerin, Javier R. Goicoechea, Pierre Gratier, Viviana V. Guzman, Annie Hughes, François Levrier, Harvey S. Liszt, Jacques Le Bourlot, Antoine Roueff and Albrecht Sievers Astronomy & Astrophysics 678 A198 (2023) https://doi.org/10.1051/0004-6361/202347074
MF-Box: multifidelity and multiscale emulation for the matter power spectrum
Ming-Feng Ho, Simeon Bird, Martin A Fernandez and Christian R Shelton Monthly Notices of the Royal Astronomical Society 526(2) 2903 (2023) https://doi.org/10.1093/mnras/stad2901
A statistical and machine learning approach to the study of astrochemistry
Understanding molecular abundances in star-forming regions using interpretable machine learning
Johannes Heyl, Joshua Butterworth and Serena Viti Monthly Notices of the Royal Astronomical Society 526(1) 404 (2023) https://doi.org/10.1093/mnras/stad2814
Neural networks: solving the chemistry of the interstellar medium
Using Statistical Emulation and Knowledge of Grain-surface Diffusion for Bayesian Inference of Reaction Rate Parameters: An Application to a Glycine Network
Radiative transfer as a Bayesian linear regression problem
F De Ceuster, T Ceulemans, J Cockayne, L Decin and J Yates Monthly Notices of the Royal Astronomical Society 518(4) 5536 (2022) https://doi.org/10.1093/mnras/stac3461
The external photoevaporation of planet-forming discs
The effects of local stellar radiation and dust depletion on non-equilibrium interstellar chemistry
Alexander J Richings, Claude-André Faucher-Giguère, Alexander B Gurvich, Joop Schaye and Christopher C Hayward Monthly Notices of the Royal Astronomical Society 517(2) 1557 (2022) https://doi.org/10.1093/mnras/stac2338
Machine learning-accelerated chemistry modeling of protoplanetary disks