The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Mass, Luminosity, and Stellar Age of Early-type Stars from the LAMOST Survey
Qida Li, Jianping Xiong, Jiao Li, Yanjun Guo, Zhanwen Han, Xuefei Chen and Chao Liu The Astrophysical Journal Supplement Series 276(1) 19 (2025) https://doi.org/10.3847/1538-4365/ad8fa9
Deep Learning-based Detection and Segmentation of Edge-on and Highly Inclined Galaxies
Ž. Chrobáková, V. Krešňáková, R. Nagy, J. Gazdová and P. Butka Publications of the Astronomical Society of the Pacific 137(3) 034101 (2025) https://doi.org/10.1088/1538-3873/adbcd6
Estimations of dark matter fractions for ETGs using the broken-power-law model and machine learning techniques
Rohan Shankar, Adithya Prakash and Aarya Mehta Monthly Notices of the Royal Astronomical Society 540(3) 2269 (2025) https://doi.org/10.1093/mnras/staf811
Prediction of Star Formation Rates Using an Artificial Neural Network
Ashraf Ayubinia, Jong-Hak Woo, Fatemeh Hafezianzadeh, Taehwan Kim and Changseok Kim The Astrophysical Journal 980(2) 177 (2025) https://doi.org/10.3847/1538-4357/ada366
Enhancing Cosmological Model Selection with Interpretable Machine Learning
Deep Learning Voigt Profiles. I. Single-Cloud Doublets
Bryson Stemock, Christopher W. Churchill, Avery Lee, Sultan Hassan, Caitlin Doughty and Rogelio Ochoa The Astronomical Journal 167(6) 287 (2024) https://doi.org/10.3847/1538-3881/ad402b
Estimation of stellar mass and star formation rate based on galaxy images
Jing Zhong, Zhijie Deng, Xiangru Li, Lili Wang, Haifeng Yang, Hui Li and Xirong Zhao Monthly Notices of the Royal Astronomical Society 531(1) 2011 (2024) https://doi.org/10.1093/mnras/stae1271
Machine learning applications in studies of the physical properties of active galactic nuclei based on photometric observations
Identifying type II quasars at intermediate redshift with few-shot learning photometric classification
P. A. C. Cunha, A. Humphrey, J. Brinchmann, S. G. Morais, R. Carvajal, J. M. Gomes, I. Matute and A. Paulino-Afonso Astronomy & Astrophysics 687 A269 (2024) https://doi.org/10.1051/0004-6361/202346426
Galaxy stellar and total mass estimation using machine learning
Jiani Chu, Hongming Tang, Dandan Xu, Shengdong Lu and Richard Long Monthly Notices of the Royal Astronomical Society 528(4) 6354 (2024) https://doi.org/10.1093/mnras/stae406
Retrieval of the physical parameters of galaxies from WEAVE-StePS-like data using machine learning
J. Angthopo, B. R. Granett, F. La Barbera, M. Longhetti, A. Iovino, M. Fossati, F. R. Ditrani, L. Costantin, S. Zibetti, A. Gallazzi, P. Sánchez-Blázquez, C. Tortora, C. Spiniello, B. Poggianti, A. Vazdekis, M. Balcells, S. Bardelli, C. R. Benn, M. Bianconi, M. Bolzonella, G. Busarello, L. P. Cassarà, E. M. Corsini, O. Cucciati, G. Dalton, et al. Astronomy & Astrophysics 690 A198 (2024) https://doi.org/10.1051/0004-6361/202449979
Baisen Ma, Qi Li, Bo Qiu, Yuanlu Chen, Yajuan Zhang, Congcong Shen and Yilong Wang 52 (2024) https://doi.org/10.1109/NTCI64025.2024.10776379
Euclid preparation
A. Enia, M. Bolzonella, L. Pozzetti, A. Humphrey, P. A. C. Cunha, W. G. Hartley, F. Dubath, S. Paltani, X. Lopez Lopez, S. Quai, S. Bardelli, L. Bisigello, S. Cavuoti, G. De Lucia, M. Ginolfi, A. Grazian, M. Siudek, C. Tortora, G. Zamorani, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, et al. Astronomy & Astrophysics 691 A175 (2024) https://doi.org/10.1051/0004-6361/202451425
Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates
Xiaotong 晓通 Guo 郭, Guanwen Fang, Haicheng Feng and Rui Zhang Research in Astronomy and Astrophysics 24(12) 125019 (2024) https://doi.org/10.1088/1674-4527/ad95d7
Exploring supernova gravitational waves with machine learning
A Mitra, B Shukirgaliyev, Y S Abylkairov and E Abdikamalov Monthly Notices of the Royal Astronomical Society 520(2) 2473 (2023) https://doi.org/10.1093/mnras/stad169
Characterizing and understanding galaxies with two parameters
Suchetha Cooray, Tsutomu T Takeuchi, Daichi Kashino, Shuntaro A Yoshida, Hai-Xia Ma and Kai T Kono Monthly Notices of the Royal Astronomical Society 524(4) 4976 (2023) https://doi.org/10.1093/mnras/stad2129
Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations
A Humphrey, P A C Cunha, A Paulino-Afonso, et al. Monthly Notices of the Royal Astronomical Society 520(1) 305 (2023) https://doi.org/10.1093/mnras/stac3596
Photometric redshift-aided classification using ensemble learning
Relating the Structure of Dark Matter Halos to Their Assembly and Environment
Yangyao Chen, H. J. Mo, Cheng Li, Huiyuan Wang, Xiaohu Yang, Youcai Zhang and Kai Wang The Astrophysical Journal 899(1) 81 (2020) https://doi.org/10.3847/1538-4357/aba597
Deep learning for Sunyaev–Zel’dovich detection in Planck
Detecting outliers in astronomical images with deep generative networks
Berta Margalef-Bentabol, Marc Huertas-Company, Tom Charnock, et al. Monthly Notices of the Royal Astronomical Society 496(2) 2346 (2020) https://doi.org/10.1093/mnras/staa1647
Predicting star formation properties of galaxies using deep learning
Shraddha Surana, Yogesh Wadadekar, Omkar Bait and Hrushikesh Bhosale Monthly Notices of the Royal Astronomical Society 493(4) 4808 (2020) https://doi.org/10.1093/mnras/staa537
Probing the azimuthal environment of galaxies around clusters
Star formation rates for photometric samples of galaxies using machine learning methods
M Delli Veneri, S Cavuoti, M Brescia, G Longo and G Riccio Monthly Notices of the Royal Astronomical Society 486(1) 1377 (2019) https://doi.org/10.1093/mnras/stz856
How to Find Variable Active Galactic Nuclei with Machine Learning