Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Mass, Luminosity, and Stellar Age of Early-type Stars from the LAMOST Survey

Qida Li, Jianping Xiong, Jiao Li, Yanjun Guo, Zhanwen Han, Xuefei Chen and Chao Liu
The Astrophysical Journal Supplement Series 276 (1) 19 (2025)
https://doi.org/10.3847/1538-4365/ad8fa9

Deep Learning-based Detection and Segmentation of Edge-on and Highly Inclined Galaxies

Ž. Chrobáková, V. Krešňáková, R. Nagy, J. Gazdová and P. Butka
Publications of the Astronomical Society of the Pacific 137 (3) 034101 (2025)
https://doi.org/10.1088/1538-3873/adbcd6

Estimations of dark matter fractions for ETGs using the broken-power-law model and machine learning techniques

Rohan Shankar, Adithya Prakash and Aarya Mehta
Monthly Notices of the Royal Astronomical Society 540 (3) 2269 (2025)
https://doi.org/10.1093/mnras/staf811

Parameter measurement based on photometric images

Jiang-Hui Cai, Na Li, Hai-Feng Yang, Li-Li Wang, Ai-Yu Zheng, Jing Hao, Xujun Zhao and Yaling Xun
Astronomy & Astrophysics 694 A271 (2025)
https://doi.org/10.1051/0004-6361/202452813

Estimation of age and metallicity for galaxies based on multi-modal deep learning

Ping Li, Li-Li Wang, Guang-Jun Yang, Jia-Bao Feng and Yan-Ke Tang
Astronomy & Astrophysics 698 A222 (2025)
https://doi.org/10.1051/0004-6361/202553751

Prediction of Star Formation Rates Using an Artificial Neural Network

Ashraf Ayubinia, Jong-Hak Woo, Fatemeh Hafezianzadeh, Taehwan Kim and Changseok Kim
The Astrophysical Journal 980 (2) 177 (2025)
https://doi.org/10.3847/1538-4357/ada366

Dissecting a miniature universe: A multi-wavelength view of galaxy quenching in the Shapley supercluster

N. Aghanim, T. Tuominen, V. Bonjean, C. Gouin, T. Bonnaire and M. Einasto
Astronomy & Astrophysics 689 A332 (2024)
https://doi.org/10.1051/0004-6361/202348672

Exploring galactic properties with machine learning

F. Z. Zeraatgari, F. Hafezianzadeh, Y.-X. Zhang, A. Mosallanezhad and J.-Y. Zhang
Astronomy & Astrophysics 688 A33 (2024)
https://doi.org/10.1051/0004-6361/202348714

Deep Learning Voigt Profiles. I. Single-Cloud Doublets

Bryson Stemock, Christopher W. Churchill, Avery Lee, Sultan Hassan, Caitlin Doughty and Rogelio Ochoa
The Astronomical Journal 167 (6) 287 (2024)
https://doi.org/10.3847/1538-3881/ad402b

Estimation of stellar mass and star formation rate based on galaxy images

Jing Zhong, Zhijie Deng, Xiangru Li, Lili Wang, Haifeng Yang, Hui Li and Xirong Zhao
Monthly Notices of the Royal Astronomical Society 531 (1) 2011 (2024)
https://doi.org/10.1093/mnras/stae1271

Machine learning applications in studies of the physical properties of active galactic nuclei based on photometric observations

Sarah Mechbal, Markus Ackermann and Marek Kowalski
Astronomy & Astrophysics 685 A107 (2024)
https://doi.org/10.1051/0004-6361/202346557

Identifying type II quasars at intermediate redshift with few-shot learning photometric classification

P. A. C. Cunha, A. Humphrey, J. Brinchmann, S. G. Morais, R. Carvajal, J. M. Gomes, I. Matute and A. Paulino-Afonso
Astronomy & Astrophysics 687 A269 (2024)
https://doi.org/10.1051/0004-6361/202346426

Galaxy stellar and total mass estimation using machine learning

Jiani Chu, Hongming Tang, Dandan Xu, Shengdong Lu and Richard Long
Monthly Notices of the Royal Astronomical Society 528 (4) 6354 (2024)
https://doi.org/10.1093/mnras/stae406

Retrieval of the physical parameters of galaxies from WEAVE-StePS-like data using machine learning

J. Angthopo, B. R. Granett, F. La Barbera, M. Longhetti, A. Iovino, M. Fossati, F. R. Ditrani, L. Costantin, S. Zibetti, A. Gallazzi, P. Sánchez-Blázquez, C. Tortora, C. Spiniello, B. Poggianti, A. Vazdekis, M. Balcells, S. Bardelli, C. R. Benn, M. Bianconi, M. Bolzonella, G. Busarello, L. P. Cassarà, E. M. Corsini, O. Cucciati, G. Dalton, et al.
Astronomy & Astrophysics 690 A198 (2024)
https://doi.org/10.1051/0004-6361/202449979

Euclid preparation

A. Enia, M. Bolzonella, L. Pozzetti, A. Humphrey, P. A. C. Cunha, W. G. Hartley, F. Dubath, S. Paltani, X. Lopez Lopez, S. Quai, S. Bardelli, L. Bisigello, S. Cavuoti, G. De Lucia, M. Ginolfi, A. Grazian, M. Siudek, C. Tortora, G. Zamorani, N. Aghanim, B. Altieri, A. Amara, S. Andreon, N. Auricchio, C. Baccigalupi, et al.
Astronomy & Astrophysics 691 A175 (2024)
https://doi.org/10.1051/0004-6361/202451425

Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates

Xiaotong 晓通 Guo 郭, Guanwen Fang, Haicheng Feng and Rui Zhang
Research in Astronomy and Astrophysics 24 (12) 125019 (2024)
https://doi.org/10.1088/1674-4527/ad95d7

Classifying MaNGA velocity dispersion profiles by machine learning

Yi Duann, Yong Tian and Chung-Ming Ko
RAS Techniques and Instruments 2 (1) 649 (2023)
https://doi.org/10.1093/rasti/rzad044

Exploring supernova gravitational waves with machine learning

A Mitra, B Shukirgaliyev, Y S Abylkairov and E Abdikamalov
Monthly Notices of the Royal Astronomical Society 520 (2) 2473 (2023)
https://doi.org/10.1093/mnras/stad169

Characterizing and understanding galaxies with two parameters

Suchetha Cooray, Tsutomu T Takeuchi, Daichi Kashino, Shuntaro A Yoshida, Hai-Xia Ma and Kai T Kono
Monthly Notices of the Royal Astronomical Society 524 (4) 4976 (2023)
https://doi.org/10.1093/mnras/stad2129

Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations

A Humphrey, P A C Cunha, A Paulino-Afonso, et al.
Monthly Notices of the Royal Astronomical Society 520 (1) 305 (2023)
https://doi.org/10.1093/mnras/stac3596

SDSS-IV MaNGA: Unveiling Galaxy Interaction by Merger Stages with Machine Learning

Yu-Yen Chang, Lihwai Lin, Hsi-An Pan, Chieh-An Lin, Bau-Ching Hsieh, Connor Bottrell and Pin-Wei Wang
The Astrophysical Journal 937 (2) 97 (2022)
https://doi.org/10.3847/1538-4357/ac8c27

Retrieving cosmological information from small-scale CMB foregrounds

Marian Douspis, Laura Salvati, Adélie Gorce and Nabila Aghanim
Astronomy & Astrophysics 659 A99 (2022)
https://doi.org/10.1051/0004-6361/202142004

Photometric redshift estimation with convolutional neural networks and galaxy images: Case study of resolving biases in data-driven methods

Q. Lin, D. Fouchez, J. Pasquet, et al.
Astronomy & Astrophysics 662 A36 (2022)
https://doi.org/10.1051/0004-6361/202142751

Galaxy Spectra Neural Networks (GaSNets). I. Searching for Strong Lens Candidates in eBOSS Spectra Using Deep Learning

Fucheng Zhong, Rui Li and Nicola R. Napolitano
Research in Astronomy and Astrophysics 22 (6) 065014 (2022)
https://doi.org/10.1088/1674-4527/ac68c4

A machine learning approach to galaxy properties: joint redshift–stellar mass probability distributions with Random Forest

S Mucesh, W G Hartley, A Palmese, et al.
Monthly Notices of the Royal Astronomical Society 502 (2) 2770 (2021)
https://doi.org/10.1093/mnras/stab164

Identifying AGN Host Galaxies by Machine Learning with HSC+WISE

Yu-Yen Chang, Bau-Ching Hsieh, Wei-Hao Wang, Yen-Ting Lin, Chen-Fatt Lim, Yoshiki Toba, Yuxing Zhong and Siou-Yu Chang
The Astrophysical Journal 920 (2) 68 (2021)
https://doi.org/10.3847/1538-4357/ac167c

Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies

Benjamin D. Oppenheimer, Arif Babul, Yannick Bahé, Iryna S. Butsky and Ian G. McCarthy
Universe 7 (7) 209 (2021)
https://doi.org/10.3390/universe7070209

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine Learning

Melanie Simet, Nima Chartab, Yu Lu and Bahram Mobasher
The Astrophysical Journal 908 (1) 47 (2021)
https://doi.org/10.3847/1538-4357/abd179

J-PAS: Measuring emission lines with artificial neural networks

G. Martínez-Solaeche, R. M. González Delgado, R. García-Benito, et al.
Astronomy & Astrophysics 647 A158 (2021)
https://doi.org/10.1051/0004-6361/202039146

Relating the Structure of Dark Matter Halos to Their Assembly and Environment

Yangyao Chen, H. J. Mo, Cheng Li, Huiyuan Wang, Xiaohu Yang, Youcai Zhang and Kai Wang
The Astrophysical Journal 899 (1) 81 (2020)
https://doi.org/10.3847/1538-4357/aba597

Filament profiles from WISExSCOS galaxies as probes of the impact of environmental effects

V. Bonjean, N. Aghanim, M. Douspis, N. Malavasi and H. Tanimura
Astronomy & Astrophysics 638 A75 (2020)
https://doi.org/10.1051/0004-6361/201937313

Detecting outliers in astronomical images with deep generative networks

Berta Margalef-Bentabol, Marc Huertas-Company, Tom Charnock, et al.
Monthly Notices of the Royal Astronomical Society 496 (2) 2346 (2020)
https://doi.org/10.1093/mnras/staa1647

Predicting star formation properties of galaxies using deep learning

Shraddha Surana, Yogesh Wadadekar, Omkar Bait and Hrushikesh Bhosale
Monthly Notices of the Royal Astronomical Society 493 (4) 4808 (2020)
https://doi.org/10.1093/mnras/staa537

horizon-AGN virtual observatory – 2. Template-free estimates of galaxy properties from colours

I Davidzon, C Laigle, P L Capak, et al.
Monthly Notices of the Royal Astronomical Society 489 (4) 4817 (2019)
https://doi.org/10.1093/mnras/stz2486

Star formation rates for photometric samples of galaxies using machine learning methods

M Delli Veneri, S Cavuoti, M Brescia, G Longo and G Riccio
Monthly Notices of the Royal Astronomical Society 486 (1) 1377 (2019)
https://doi.org/10.1093/mnras/stz856

How to Find Variable Active Galactic Nuclei with Machine Learning

Andreas L. Faisst, Abhishek Prakash, Peter L. Capak and Bomee Lee
The Astrophysical Journal Letters 881 (1) L9 (2019)
https://doi.org/10.3847/2041-8213/ab3581