Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

PICZL: Image-based photometric redshifts for AGN

W. Roster, M. Salvato, S. Krippendorf, A. Saxena, R. Shirley, J. Buchner, J. Wolf, T. Dwelly, F. E. Bauer, J. Aird, C. Ricci, R. J. Assef, S. F. Anderson, X. Liu, A. Merloni, J. Weller and K. Nandra
Astronomy & Astrophysics 692 A260 (2024)
https://doi.org/10.1051/0004-6361/202452361

Fraction of broad absorption line quasars in different radio morphologies

A Nair and M Vivek
Monthly Notices of the Royal Astronomical Society 511 (4) 4946 (2022)
https://doi.org/10.1093/mnras/stac204

Using machine learning to identify extragalactic globular cluster candidates from ground-based photometric surveys of M87

Emilia Barbisan, Jeff Huang, Kristen C Dage, et al.
Monthly Notices of the Royal Astronomical Society 514 (1) 943 (2022)
https://doi.org/10.1093/mnras/stac1396

A machine learning approach to correct for mass resolution effects in simulated halo clustering statistics

Daniel Forero-Sánchez, Chia-Hsun Chuang, Sergio Rodríguez-Torres, et al.
Monthly Notices of the Royal Astronomical Society 513 (3) 4318 (2022)
https://doi.org/10.1093/mnras/stac1239

PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars

Shuxin Hong, Zhiqiang Zou, A-Li Luo, et al.
Monthly Notices of the Royal Astronomical Society 518 (4) 5049 (2022)
https://doi.org/10.1093/mnras/stac3259

Testing the evolutionary pathways of galaxies and their supermassive black holes and the impact of feedback from active galactic nuclei via large multiwavelength data sets

George Mountrichas and Francesco Shankar
Monthly Notices of the Royal Astronomical Society 518 (2) 2088 (2022)
https://doi.org/10.1093/mnras/stac3211

Estimating galaxy redshift in radio-selected datasets using machine learning

K.J. Luken, R.P. Norris, L.A.F. Park, X.R. Wang and M.D. Filipović
Astronomy and Computing 39 100557 (2022)
https://doi.org/10.1016/j.ascom.2022.100557

A search for X-ray absorbed sources in the 3XMM catalogue using photometric redshifts and Bayesian spectral fits

A. Ruiz, I. Georgantopoulos and A. Corral
Astronomy & Astrophysics 645 A74 (2021)
https://doi.org/10.1051/0004-6361/202039431

Automated algorithms to build active galactic nucleus classifiers

S Falocco, F J Carrera and J Larsson
Monthly Notices of the Royal Astronomical Society 510 (1) 161 (2021)
https://doi.org/10.1093/mnras/stab3435

A Machine Learning Based Morphological Classification of 14,245 Radio AGNs Selected from the Best–Heckman Sample

Zhixian Ma, Haiguang Xu, Jie Zhu, Dan Hu, Weitian Li, Chenxi Shan, Zhenghao Zhu, Liyi Gu, Jinjin Li, Chengze Liu and Xiangping Wu
The Astrophysical Journal Supplement Series 240 (2) 34 (2019)
https://doi.org/10.3847/1538-4365/aaf9a2

Preliminary Results of Using k-nearest-neighbor Regression to Estimate the Redshift of Radio-selected Data Sets

Kieran J. Luken, Ray P. Norris and Laurence A. F. Park
Publications of the Astronomical Society of the Pacific 131 (1004) 108003 (2019)
https://doi.org/10.1088/1538-3873/aaea17

Photometric redshifts for X-ray-selected active galactic nuclei in the eROSITA era

M Brescia, M Salvato, S Cavuoti, et al.
Monthly Notices of the Royal Astronomical Society 489 (1) 663 (2019)
https://doi.org/10.1093/mnras/stz2159

Measuring the Probabilistic Photometric Redshifts of X-ray Quasars Based on the Quantile Regression of Ensembles of Decision Trees

A. V. Meshcheryakov, V. V. Glazkova, S. V. Gerasimov and I. V. Mashechkin
Astronomy Letters 44 (12) 735 (2018)
https://doi.org/10.1134/S1063773718120058