The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Gaia Focused Product Release: Radial velocity time series of long-period variables
M. Trabucchi, N. Mowlavi, T. Lebzelter, I. Lecoeur-Taibi, M. Audard, L. Eyer, P. García-Lario, P. Gavras, B. Holl, G. Jevardat de Fombelle, K. Nienartowicz, L. Rimoldini, P. Sartoretti, R. Blomme, Y. Frémat, O. Marchal, Y. Damerdji, A. G. A. Brown, A. Guerrier, P. Panuzzo, D. Katz, G. M. Seabroke, K. Benson, R. Haigron, M. Smith, et al. Astronomy & Astrophysics 680 A36 (2023) https://doi.org/10.1051/0004-6361/202347287
Semi-supervised classification and clustering analysis for variable stars
R Pantoja, M Catelan, K Pichara and P Protopapas Monthly Notices of the Royal Astronomical Society 517(3) 3660 (2022) https://doi.org/10.1093/mnras/stac2715
A Comprehensive Power Spectral Density Analysis of Astronomical Time Series. II. The Swift/BAT Long Gamma-Ray Bursts
A Comprehensive Power Spectral Density Analysis of Astronomical Time Series. I. The Fermi-LAT Gamma-Ray Light Curves of Selected Blazars
Mariusz Tarnopolski, Natalia Żywucka, Volodymyr Marchenko and Javier Pascual-Granado The Astrophysical Journal Supplement Series 250(1) 1 (2020) https://doi.org/10.3847/1538-4365/aba2c7
Variability search in M 31 using principal component analysis and the Hubble Source Catalogue
M I Moretti, D Hatzidimitriou, A Karampelas, et al. Monthly Notices of the Royal Astronomical Society 477(2) 2664 (2018) https://doi.org/10.1093/mnras/sty758
Machine learning search for variable stars
Ilya N Pashchenko, Kirill V Sokolovsky and Panagiotis Gavras Monthly Notices of the Royal Astronomical Society 475(2) 2326 (2018) https://doi.org/10.1093/mnras/stx3222
Comparative performance of selected variability detection techniques in photometric time series data
K. V. Sokolovsky, P. Gavras, A. Karampelas, et al. Monthly Notices of the Royal Astronomical Society 464(1) 274 (2017) https://doi.org/10.1093/mnras/stw2262
Machine learning techniques to select Be star candidates