Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Gaia Focused Product Release: Radial velocity time series of long-period variables

M. Trabucchi, N. Mowlavi, T. Lebzelter, I. Lecoeur-Taibi, M. Audard, L. Eyer, P. García-Lario, P. Gavras, B. Holl, G. Jevardat de Fombelle, K. Nienartowicz, L. Rimoldini, P. Sartoretti, R. Blomme, Y. Frémat, O. Marchal, Y. Damerdji, A. G. A. Brown, A. Guerrier, P. Panuzzo, D. Katz, G. M. Seabroke, K. Benson, R. Haigron, M. Smith, et al.
Astronomy & Astrophysics 680 A36 (2023)
https://doi.org/10.1051/0004-6361/202347287

Semi-supervised classification and clustering analysis for variable stars

R Pantoja, M Catelan, K Pichara and P Protopapas
Monthly Notices of the Royal Astronomical Society 517 (3) 3660 (2022)
https://doi.org/10.1093/mnras/stac2715

A Comprehensive Power Spectral Density Analysis of Astronomical Time Series. II. The Swift/BAT Long Gamma-Ray Bursts

Mariusz Tarnopolski and Volodymyr Marchenko
The Astrophysical Journal 911 (1) 20 (2021)
https://doi.org/10.3847/1538-4357/abe5b1

A Comprehensive Power Spectral Density Analysis of Astronomical Time Series. I. The Fermi-LAT Gamma-Ray Light Curves of Selected Blazars

Mariusz Tarnopolski, Natalia Żywucka, Volodymyr Marchenko and Javier Pascual-Granado
The Astrophysical Journal Supplement Series 250 (1) 1 (2020)
https://doi.org/10.3847/1538-4365/aba2c7

Optical Variability Modeling of Newly Identified Blazar Candidates behind Magellanic Clouds

Natalia Żywucka, Mariusz Tarnopolski, Markus Böttcher, Łukasz Stawarz and Volodymyr Marchenko
The Astrophysical Journal 888 (2) 107 (2020)
https://doi.org/10.3847/1538-4357/ab5fe5

Variability search in M 31 using principal component analysis and the Hubble Source Catalogue

M I Moretti, D Hatzidimitriou, A Karampelas, et al.
Monthly Notices of the Royal Astronomical Society 477 (2) 2664 (2018)
https://doi.org/10.1093/mnras/sty758

Machine learning search for variable stars

Ilya N Pashchenko, Kirill V Sokolovsky and Panagiotis Gavras
Monthly Notices of the Royal Astronomical Society 475 (2) 2326 (2018)
https://doi.org/10.1093/mnras/stx3222

A simple and fast representation space for classifying complex time series

Luciano Zunino, Felipe Olivares, Aurelio F. Bariviera and Osvaldo A. Rosso
Physics Letters A 381 (11) 1021 (2017)
https://doi.org/10.1016/j.physleta.2017.01.047

Comparative performance of selected variability detection techniques in photometric time series data

K. V. Sokolovsky, P. Gavras, A. Karampelas, et al.
Monthly Notices of the Royal Astronomical Society 464 (1) 274 (2017)
https://doi.org/10.1093/mnras/stw2262

Machine learning techniques to select Be star candidates

M. F. Pérez-Ortiz, A. García-Varela, A. J. Quiroz, B. E. Sabogal and J. Hernández
Astronomy & Astrophysics 605 A123 (2017)
https://doi.org/10.1051/0004-6361/201628937

Skysurveys, Light Curves and Statistical Challenges

G. Jogesh Babu and Ashish Mahabal
International Statistical Review 84 (3) 506 (2016)
https://doi.org/10.1111/insr.12118