Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Morpho-z: improving photometric redshifts with galaxy morphology

John Y H Soo, Bruno Moraes, Benjamin Joachimi, et al.
Monthly Notices of the Royal Astronomical Society 475 (3) 3613 (2018)
https://doi.org/10.1093/mnras/stx3201

the-wizz: clustering redshift estimation for everyone

C. B. Morrison, H. Hildebrandt, S. J. Schmidt, et al.
Monthly Notices of the Royal Astronomical Society 467 (3) 3576 (2017)
https://doi.org/10.1093/mnras/stx342

Scientific Synergy between LSST and Euclid

Jason Rhodes, Robert C. Nichol, Éric Aubourg, Rachel Bean, Dominique Boutigny, Malcolm N. Bremer, Peter Capak, Vincenzo Cardone, Benoît Carry, Christopher J. Conselice, Andrew J. Connolly, Jean-Charles Cuillandre, N. A. Hatch, George Helou, Shoubaneh Hemmati, Hendrik Hildebrandt, Renée Hložek, Lynne Jones, Steven Kahn, Alina Kiessling, Thomas Kitching, Robert Lupton, Rachel Mandelbaum, Katarina Markovic, Phil Marshall, et al.
The Astrophysical Journal Supplement Series 233 (2) 21 (2017)
https://doi.org/10.3847/1538-4365/aa96b0

Cosmological constraints with clustering-based redshifts

Ely D. Kovetz, Alvise Raccanelli and Mubdi Rahman
Monthly Notices of the Royal Astronomical Society 468 (3) 3650 (2017)
https://doi.org/10.1093/mnras/stx691

Deriving photometric redshifts using fuzzy archetypes and self-organizing maps – II. Implementation

Joshua S. Speagle and Daniel J. Eisenstein
Monthly Notices of the Royal Astronomical Society 469 (1) 1205 (2017)
https://doi.org/10.1093/mnras/stx510

H0LiCOW – III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435−1223 through weighted galaxy counts★

Cristian E. Rusu, Christopher D. Fassnacht, Dominique Sluse, et al.
Monthly Notices of the Royal Astronomical Society 467 (4) 4220 (2017)
https://doi.org/10.1093/mnras/stx285

Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information

E. Jones and J. Singal
Astronomy & Astrophysics 600 A113 (2017)
https://doi.org/10.1051/0004-6361/201629558

Deriving photometric redshifts using fuzzy archetypes and self-organizing maps – I. Methodology

Joshua S. Speagle and Daniel J. Eisenstein
Monthly Notices of the Royal Astronomical Society 469 (1) 1186 (2017)
https://doi.org/10.1093/mnras/stw1485

KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing

H. Hildebrandt, M. Viola, C. Heymans, et al.
Monthly Notices of the Royal Astronomical Society 465 (2) 1454 (2017)
https://doi.org/10.1093/mnras/stw2805

A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data

S. Cavuoti, C. Tortora, M. Brescia, et al.
Monthly Notices of the Royal Astronomical Society 466 (2) 2039 (2017)
https://doi.org/10.1093/mnras/stw3208

A unified framework for constructing, tuning and assessing photometric redshift density estimates in a selection bias setting

P. E. Freeman, R. Izbicki and A. B. Lee
Monthly Notices of the Royal Astronomical Society 468 (4) 4556 (2017)
https://doi.org/10.1093/mnras/stx764

On the realistic validation of photometric redshifts

R. Beck, C.-A. Lin, E. E. O. Ishida, et al.
Monthly Notices of the Royal Astronomical Society 468 (4) 4323 (2017)
https://doi.org/10.1093/mnras/stx687

Photo-z-SQL: Integrated, flexible photometric redshift computation in a database

R. Beck, L. Dobos, T. Budavári, A.S. Szalay and I. Csabai
Astronomy and Computing 19 34 (2017)
https://doi.org/10.1016/j.ascom.2017.03.002

Sacrificing information for the greater good: how to select photometric bands for optimal accuracy

Kristoffer Stensbo-Smidt, Fabian Gieseke, Christian Igel, Andrew Zirm and Kim Steenstrup Pedersen
Monthly Notices of the Royal Astronomical Society 464 (3) 2577 (2017)
https://doi.org/10.1093/mnras/stw2476

The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample tor < 19.5

C. Wolf, A. S. Johnson, M. Bilicki, et al.
Monthly Notices of the Royal Astronomical Society 466 (2) 1582 (2017)
https://doi.org/10.1093/mnras/stw3151

SED-dependent galactic extinction prescription forEuclidand future cosmological surveys

Audrey Galametz, Roberto Saglia, Stéphane Paltani, Nikolaos Apostolakos and Pierre Dubath
Astronomy & Astrophysics 598 A20 (2017)
https://doi.org/10.1051/0004-6361/201629333

A sparse Gaussian process framework for photometric redshift estimation

Ibrahim A. Almosallam, Sam N. Lindsay, Matt J. Jarvis and Stephen J. Roberts
Monthly Notices of the Royal Astronomical Society 455 (3) 2387 (2016)
https://doi.org/10.1093/mnras/stv2425

Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

Boris Leistedt, Daniel J. Mortlock and Hiranya V. Peiris
Monthly Notices of the Royal Astronomical Society 460 (4) 4258 (2016)
https://doi.org/10.1093/mnras/stw1304

Tuning target selection algorithms to improve galaxy redshift estimates

Ben Hoyle, Kerstin Paech, Markus Michael Rau, Stella Seitz and Jochen Weller
Monthly Notices of the Royal Astronomical Society 458 (4) 4498 (2016)
https://doi.org/10.1093/mnras/stw563

Overconfidence in photometric redshift estimation

David Wittman, Ramya Bhaskar and Ryan Tobin
Monthly Notices of the Royal Astronomical Society 457 (4) 4005 (2016)
https://doi.org/10.1093/mnras/stw261

Joint measurement of lensing–galaxy correlations using SPT and DES SV data

E. Baxter, J. Clampitt, T. Giannantonio, et al.
Monthly Notices of the Royal Astronomical Society 461 (4) 4099 (2016)
https://doi.org/10.1093/mnras/stw1584

Cross-correlation of gravitational lensing from DES Science Verification data with SPT andPlancklensing

D. Kirk, Y. Omori, A. Benoit-Lévy, et al.
Monthly Notices of the Royal Astronomical Society 459 (1) 21 (2016)
https://doi.org/10.1093/mnras/stw570

The Universe of Digital Sky Surveys

J. Elliott, R. S. de Souza, A. Krone-Martins, et al.
Astrophysics and Space Science Proceedings, The Universe of Digital Sky Surveys 42 91 (2016)
https://doi.org/10.1007/978-3-319-19330-4_13

DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting

J. De Vicente, E. Sánchez and I. Sevilla-Noarbe
Monthly Notices of the Royal Astronomical Society 459 (3) 3078 (2016)
https://doi.org/10.1093/mnras/stw857

A systematic search for lensed high-redshift galaxies inHSTimages of MACS clusters

A. Repp, H. Ebeling and J. Richard
Monthly Notices of the Royal Astronomical Society 457 (2) 1399 (2016)
https://doi.org/10.1093/mnras/stw002

Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

C. Bonnett, M. A. Troxel, W. Hartley, et al.
Physical Review D 94 (4) (2016)
https://doi.org/10.1103/PhysRevD.94.042005

Exploring photometric redshifts as an optimization problem: an ensemble MCMC and simulated annealing-driven template-fitting approach

Joshua S. Speagle, Peter L. Capak, Daniel J. Eisenstein, Daniel C. Masters and Charles L. Steinhardt
Monthly Notices of the Royal Astronomical Society 461 (4) 3432 (2016)
https://doi.org/10.1093/mnras/stw1503

ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning

I. Sadeh, F. B. Abdalla and O. Lahav
Publications of the Astronomical Society of the Pacific 128 (968) 104502 (2016)
https://doi.org/10.1088/1538-3873/128/968/104502

GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts

Ibrahim A. Almosallam, Matt J. Jarvis and Stephen J. Roberts
Monthly Notices of the Royal Astronomical Society 462 (1) 726 (2016)
https://doi.org/10.1093/mnras/stw1618

An accurate cluster selection function for the J-PAS narrow-band wide-field survey

B. Ascaso, N. Benítez, R. Dupke, et al.
Monthly Notices of the Royal Astronomical Society 456 (4) 4291 (2016)
https://doi.org/10.1093/mnras/stv2988

LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE

Rachel Bezanson, David A. Wake, Gabriel B. Brammer, Pieter G. van Dokkum, Marijn Franx, Ivo Labbé, Joel Leja, Ivelina G. Momcheva, Erica J. Nelson, Ryan F. Quadri, Rosalind E. Skelton, Benjamin J. Weiner and Katherine E. Whitaker
The Astrophysical Journal 822 (1) 30 (2016)
https://doi.org/10.3847/0004-637X/822/1/30

Improving photometric redshifts with Lyα tomography

Marcel Schmittfull and Martin White
Monthly Notices of the Royal Astronomical Society 463 (1) 332 (2016)
https://doi.org/10.1093/mnras/stw1988

The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses★

Henk Hoekstra, Ricardo Herbonnet, Adam Muzzin, et al.
Monthly Notices of the Royal Astronomical Society 449 (1) 685 (2015)
https://doi.org/10.1093/mnras/stv275

Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

S. Cavuoti, M. Brescia, C. Tortora, et al.
Monthly Notices of the Royal Astronomical Society 452 (3) 3100 (2015)
https://doi.org/10.1093/mnras/stv1496

Anomaly detection for machine learning redshifts applied to SDSS galaxies

Ben Hoyle, Markus Michael Rau, Kerstin Paech, et al.
Monthly Notices of the Royal Astronomical Society 452 (4) 4183 (2015)
https://doi.org/10.1093/mnras/stv1551

UVUDF: ULTRAVIOLET THROUGH NEAR-INFRARED CATALOG AND PHOTOMETRIC REDSHIFTS OF GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

Marc Rafelski, Harry I. Teplitz, Jonathan P. Gardner, et al.
The Astronomical Journal 150 (1) 31 (2015)
https://doi.org/10.1088/0004-6256/150/1/31

The overlooked potential of Generalized Linear Models in astronomy-II: Gamma regression and photometric redshifts

J. Elliott, R.S. de Souza, A. Krone-Martins, et al.
Astronomy and Computing 10 61 (2015)
https://doi.org/10.1016/j.ascom.2015.01.002

Optical and Sunyaev–Zel'dovich observations of a new sample of distant rich galaxy clusters in the ROSAT All Sky

A. Buddendiek, T. Schrabback, C. H. Greer, et al.
Monthly Notices of the Royal Astronomical Society 450 (4) 4248 (2015)
https://doi.org/10.1093/mnras/stv783

Feature importance for machine learning redshifts applied to SDSS galaxies

B. Hoyle, M. M. Rau, R. Zitlau, S. Seitz and J. Weller
Monthly Notices of the Royal Astronomical Society 449 (2) 1275 (2015)
https://doi.org/10.1093/mnras/stv373

Spectroscopic needs for imaging dark energy experiments

Jeffrey A. Newman, Alexandra Abate, Filipe B. Abdalla, Sahar Allam, Steven W. Allen, Réza Ansari, Stephen Bailey, Wayne A. Barkhouse, Timothy C. Beers, Michael R. Blanton, Mark Brodwin, Joel R. Brownstein, Robert J. Brunner, Matias Carrasco Kind, Jorge L. Cervantes-Cota, Elliott Cheu, Nora Elisa Chisari, Matthew Colless, Johan Comparat, Jean Coupon, Carlos E. Cunha, Axel de la Macorra, Ian P. Dell’Antonio, Brenda L. Frye, Eric J. Gawiser, et al.
Astroparticle Physics 63 81 (2015)
https://doi.org/10.1016/j.astropartphys.2014.06.007

Clustering-based redshift estimation: comparison to spectroscopic redshifts

Mubdi Rahman, Brice Ménard, Ryan Scranton, Samuel J. Schmidt and Christopher B. Morrison
Monthly Notices of the Royal Astronomical Society 447 (4) 3500 (2015)
https://doi.org/10.1093/mnras/stu2636

Apples to apples A2– I. Realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys

B. Ascaso, S. Mei and N. Benítez
Monthly Notices of the Royal Astronomical Society 453 (3) 2516 (2015)
https://doi.org/10.1093/mnras/stv1597

Submegaparsec individual photometric redshift estimation from cosmic web constraints

M. A. Aragon-Calvo, Rien van de Weygaert, Bernard J. T. Jones and Bahram Mobasher
Monthly Notices of the Royal Astronomical Society 454 (1) 463 (2015)
https://doi.org/10.1093/mnras/stv1903

Data augmentation for machine learning redshifts applied to Sloan Digital Sky Survey galaxies

Ben Hoyle, Markus Michael Rau, Christopher Bonnett, Stella Seitz and Jochen Weller
Monthly Notices of the Royal Astronomical Society 450 (1) 305 (2015)
https://doi.org/10.1093/mnras/stv599

GAz: a genetic algorithm for photometric redshift estimation

Robert Hogan, Malcolm Fairbairn and Navin Seeburn
Monthly Notices of the Royal Astronomical Society 449 (2) 2040 (2015)
https://doi.org/10.1093/mnras/stv430

TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING

Steven A. Rodney, Adam G. Riess, Daniel M. Scolnic, et al.
The Astronomical Journal 150 (5) 156 (2015)
https://doi.org/10.1088/0004-6256/150/5/156

Using neural networks to estimate redshift distributions. An application to CFHTLenS

Christopher Bonnett
Monthly Notices of the Royal Astronomical Society 449 (1) 1043 (2015)
https://doi.org/10.1093/mnras/stv230

MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

Daniel Masters, Peter Capak, Daniel Stern, et al.
The Astrophysical Journal 813 (1) 53 (2015)
https://doi.org/10.1088/0004-637X/813/1/53

Accurate photometric redshift probability density estimation – method comparison and application

Markus Michael Rau, Stella Seitz, Fabrice Brimioulle, et al.
Monthly Notices of the Royal Astronomical Society 452 (4) 3710 (2015)
https://doi.org/10.1093/mnras/stv1567

Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

Carlos E. Cunha, Dragan Huterer, Huan Lin, Michael T. Busha and Risa H. Wechsler
Monthly Notices of the Royal Astronomical Society 444 (1) 129 (2014)
https://doi.org/10.1093/mnras/stu1424

CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing

Malin Velander, Edo van Uitert, Henk Hoekstra, et al.
Monthly Notices of the Royal Astronomical Society 437 (3) 2111 (2014)
https://doi.org/10.1093/mnras/stt2013

A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0-6

J. S. Speagle, C. L. Steinhardt, P. L. Capak and J. D. Silverman
The Astrophysical Journal Supplement Series 214 (2) 15 (2014)
https://doi.org/10.1088/0067-0049/214/2/15

THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

A. Raichoor, S. Mei, T. Erben, et al.
The Astrophysical Journal 797 (2) 102 (2014)
https://doi.org/10.1088/0004-637X/797/2/102

TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE

O. Graur, S. A. Rodney, D. Maoz, et al.
The Astrophysical Journal 783 (1) 28 (2014)
https://doi.org/10.1088/0004-637X/783/1/28

DAMEWARE: A Web Cyberinfrastructure for Astrophysical Data Mining

Massimo Brescia, Stefano Cavuoti, Giuseppe Longo, et al.
Publications of the Astronomical Society of the Pacific 000 (2014)
https://doi.org/10.1086/677725

The first analytical expression to estimate photometric redshifts suggested by a machine

A. Krone-Martins, E. E. O. Ishida and R. S. de Souza
Monthly Notices of the Royal Astronomical Society: Letters 443 (1) L34 (2014)
https://doi.org/10.1093/mnrasl/slu067

SOMz: photometric redshift PDFs with self-organizing maps and random atlas

Matias Carrasco Kind and Robert J. Brunner
Monthly Notices of the Royal Astronomical Society 438 (4) 3409 (2014)
https://doi.org/10.1093/mnras/stt2456

Photometric redshift analysis in the Dark Energy Survey Science Verification data

C. Sánchez, M. Carrasco Kind, H. Lin, et al.
Monthly Notices of the Royal Astronomical Society 445 (2) 1482 (2014)
https://doi.org/10.1093/mnras/stu1836

Exhausting the information: novel Bayesian combination of photometric redshift PDFs

Matias Carrasco Kind and Robert J. Brunner
Monthly Notices of the Royal Astronomical Society 442 (4) 3380 (2014)
https://doi.org/10.1093/mnras/stu1098

ESTIMATING LUMINOSITIES AND STELLAR MASSES OF GALAXIES PHOTOMETRICALLY WITHOUT DETERMINING REDSHIFTS

B. C. Hsieh and H. K. C. Yee
The Astrophysical Journal 792 (2) 102 (2014)
https://doi.org/10.1088/0004-637X/792/2/102

Sparse representation of photometric redshift probability density functions: preparing for petascale astronomy

Matias Carrasco Kind and Robert J. Brunner
Monthly Notices of the Royal Astronomical Society 441 (4) 3550 (2014)
https://doi.org/10.1093/mnras/stu827

ANNz2 - Photometric redshift and probability density function estimation using machine-learning

Iftach Sadeh
Proceedings of the International Astronomical Union 10 (S306) 316 (2014)
https://doi.org/10.1017/S1743921314010849

Giga- z : A 100,000 OBJECT SUPERCONDUCTING SPECTROPHOTOMETER FOR LSST FOLLOW-UP

Danica W. Marsden, Benjamin A. Mazin, Kieran O’Brien and Chris Hirata
The Astrophysical Journal Supplement Series 208 (1) 8 (2013)
https://doi.org/10.1088/0067-0049/208/1/8

Improved photometric redshifts via enhanced estimates of system response, galaxy templates and magnitude priors

S. J. Schmidt and P. Thorman
Monthly Notices of the Royal Astronomical Society 431 (3) 2766 (2013)
https://doi.org/10.1093/mnras/stt373

COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩMAND σ8WITH A TWO-DIMENSIONAL ANALYSIS

M. James Jee, J. Anthony Tyson, Michael D. Schneider, et al.
The Astrophysical Journal 765 (1) 74 (2013)
https://doi.org/10.1088/0004-637X/765/1/74

A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

Tomas Dahlen, Bahram Mobasher, Sandra M. Faber, et al.
The Astrophysical Journal 775 (2) 93 (2013)
https://doi.org/10.1088/0004-637X/775/2/93

Recovering galaxy stellar population properties from broad-band spectral energy distribution fitting - II. The case with unknown redshift

J. Pforr, C. Maraston and C. Tonini
Monthly Notices of the Royal Astronomical Society 435 (2) 1389 (2013)
https://doi.org/10.1093/mnras/stt1382

Revised SWIRE photometric redshifts

Michael Rowan-Robinson, Eduardo Gonzalez-Solares, Mattia Vaccari and Lucia Marchetti
Monthly Notices of the Royal Astronomical Society 428 (3) 1958 (2013)
https://doi.org/10.1093/mnras/sts163

ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THEk-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

Yanxia Zhang, He Ma, Nanbo Peng, Yongheng Zhao and Xue-bing Wu
The Astronomical Journal 146 (2) 22 (2013)
https://doi.org/10.1088/0004-6256/146/2/22

TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests

Matias Carrasco Kind and Robert J. Brunner
Monthly Notices of the Royal Astronomical Society 432 (2) 1483 (2013)
https://doi.org/10.1093/mnras/stt574

Photometric redshifts with the quasi Newton algorithm (MLPQNA) Results in the PHAT1 contest

S. Cavuoti, M. Brescia, G. Longo and A. Mercurio
Astronomy & Astrophysics 546 A13 (2012)
https://doi.org/10.1051/0004-6361/201219755

A high-resolution atlas of composite Sloan Digital Sky Survey galaxy spectra

László Dobos, István Csabai, Ching-Wa Yip, et al.
Monthly Notices of the Royal Astronomical Society 420 (2) 1217 (2012)
https://doi.org/10.1111/j.1365-2966.2011.20109.x

Integrated photometric redshifts and SED fitting as tool for galaxy evolution studies

Ralf Kotulla
Proceedings of the International Astronomical Union 8 (S289) 292 (2012)
https://doi.org/10.1017/S1743921312021576

Can Self-Organizing Maps Accurately Predict Photometric Redshifts?

M. J. Way and C. D. Klose
Publications of the Astronomical Society of the Pacific 124 (913) 274 (2012)
https://doi.org/10.1086/664796

CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey

Catherine Heymans, Ludovic Van Waerbeke, Lance Miller, et al.
Monthly Notices of the Royal Astronomical Society 427 (1) 146 (2012)
https://doi.org/10.1111/j.1365-2966.2012.21952.x

Measuring large-scale structure with quasars in narrow-band filter surveys

L. Raul Abramo, Michael A. Strauss, Marcos Lima, et al.
Monthly Notices of the Royal Astronomical Society 423 (4) 3251 (2012)
https://doi.org/10.1111/j.1365-2966.2012.21115.x