next previous
Up: Global modes and migration


  
Appendix 2: The equations of motion in two dimensional
orthogonal cordinates

The basic equations of motion (1) written in vector form are

 \begin{displaymath}{\partial {\vec v} \over\partial t}+
{\vec v}\cdot \nabla {\vec v} =
-{1\over \Sigma}\nabla \Pi -
\nabla \Phi.
\end{displaymath} (78)

We wish to write these in component form in a general two dimensional orthogonal coordinate system $(a,\lambda)$ in the Cartesian (x,y)plane as introduced in Sect. 5. The unit vectors in these orthogonal coordinate directions are ${\vec i}_{\rm a} = \nabla a/\vert\nabla a\vert$ and $ {\vec i}_{\lambda}
= \nabla \lambda/\vert\nabla \lambda\vert$respectively. The orthogonal vertical coordinate z has an additional associated orthogonal unit vector ${\vec {\hat k}} ={\vec i}_{\rm a} \times {\vec i}_{\lambda}.$However, there is no dependence on z and the velocity component in that direction can be taken to be zero.

Thus we may write ${\vec v}\equiv ( v_{\rm a}, v_{\lambda})$or


\begin{displaymath}{\vec v} = v_{\rm a} {\vec i}_{\rm a} + v_{\lambda} {\vec i}_{\lambda}. \end{displaymath} (79)

To deal with Eq. (.78), we first use the vector identity


\begin{displaymath}{\vec v}\cdot \nabla {\vec v}= {1\over 2} \nabla( \vert{\vec v}\vert^2)
+ {\vec \omega} \times {\vec v} ,\end{displaymath} (80)

where ${\vec \omega} = \nabla \times {\vec v} $ is the vorticity (Arfken & Weber 2000).

Because we only wish to consider the equations in a two dimensional limit, only the z component of vorticity, $\omega_z$ is non zero so that we may write Eq. (.78) as


 \begin{displaymath}{\partial {\vec v} \over\partial t}+
\omega_z {\vec {\hat k}...
...ert{\vec v}\vert^2)=
-{1\over \Sigma}\nabla \Pi -
\nabla \Phi.
\end{displaymath} (81)

We may now write Eq. (.81) in component form using the identities (see Arfken & Weber 2000)

\begin{displaymath}\nabla \equiv \nabla a {\partial \over \partial a}
+ \nabla \lambda {\partial \over \partial \lambda } \end{displaymath} (82)

and


 \begin{displaymath}\omega_z =\left(\nabla \times {\vec v}\right) \cdot {\vec {\h...
...la {\rm a}\vert}\right)
\over \partial \lambda } \right )\cdot
\end{displaymath} (83)

Doing this we obtain


 
$\displaystyle {\partial v_{\rm a} \over\partial t}-
\omega_z v _{\lambda} +{1\o...
...Pi \over \partial a} -
\vert\nabla a\vert {\partial \Phi \over \partial a}\cdot$     (84)

and
 
$\displaystyle {\partial v_{\lambda} \over\partial t}+
\omega_z v _{\rm a} +{1\o...
...lambda} -
\vert\nabla \lambda \vert {\partial \Phi \over \partial \lambda}\cdot$     (85)

After inserting (.83) into (.84) and (.85) it is a simple matter to obtain Eqs. (34) and (35) as given in Sect. 5.


next previous
Up: Global modes and migration

Copyright ESO 2002