Issue |
A&A
Volume 464, Number 3, March IV 2007
|
|
---|---|---|
Page(s) | 1049 - 1057 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361:20066623 | |
Published online | 19 December 2006 |
Magnetic flux transport on active cool stars and starspot lifetimes
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany e-mail: [ishik;schuessler;solanki]@mps.mpg.de
Received:
23
October
2006
Accepted:
30
November
2006
Context.Many rapidly rotating cool stars show signatures of large magnetic regions at all latitudes. Mid-latitude starspots and magnetic regions have characteristic lifetimes of 1 month or less, as indicated by observations using (Zeeman-) Doppler imaging techniques.
Aims.We aim to estimate the lifetimes of bipolar magnetic regions and starspots on the surfaces of cool stars. We consider different possible configurations for starspots and compare their flux variations and lifetimes based on a magnetic flux transport model.
Methods.We carry out numerical simulations of the surface evolution of bipolar magnetic regions (BMRs) and magnetic spots on stars, which have radii and surface rotational shears of AB Doradus, the Sun, and the HR 1099 primary. The surface flux transport model is based on the magnetic induction equation for radial fields under the effects of surface differential rotation, meridional flow, and turbulent diffusion due to convective flow patterns. We calculate the flux evolution and the lifetimes of BMRs and unipolar starspots, varying the emergence latitude, surface shear rate, and tilt angle.
Results.For BMRs comparable to the largest observed on the Sun, we find that varying
the surface flows and the tilt angle modifies the lifetimes over a range of one
month. For very large BMRs (area ~10% of the stellar surface) the
assumption of a tilt angle increasing with latitude leads to a significant
increase of lifetime, as compared to the case without tilt. Such regions can
evolve to polar spots that live more than a year. Adopting the observed
weak latitudinal shear and the radius of the active subgiant component of HR 1099, we find longer BMR lifetimes as compared to the more strongly sheared
AB Dor case. Random emergence of six additional tilted bipoles in an activity
belt at latitude enhanced the lifetimes of polar caps up to 7 years.
We have also compared the evolution and lifetime of monolithic
starspots with those of conglomerates of smaller spots of similar total area.
We find similar decay patterns and lifetimes for both configurations.
Key words: stars: magnetic fields / magnetohydrodynamics (MHD) / stars: activity
© ESO, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.