EDP Sciences
Free access
Volume 481, Number 1, April I 2008
Page(s) 65 - 77
Section Cosmology (including clusters of galaxies)
DOI http://dx.doi.org/10.1051/0004-6361:20078877
Published online 07 February 2008

A&A 481, 65-77 (2008)
DOI: 10.1051/0004-6361:20078877

The mass distribution of RX J1347-1145 from strong lensing

A. Halkola1, H. Hildebrandt1, T. Schrabback1, M. Lombardi2, M. Bradac3, 4, T. Erben1, P. Schneider1, and D. Wuttke1

1  Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
    e-mail: halkola@astro.uni-bonn.de
2  European Southern Observatory, Karl-Schwarzschild-Strasse 2 85748 Garching bei München, Germany
3  Kavli Institute for Particle Astrophysics and Cosmology,2575 Sand Hill Rd. MS29, Menlo Park, CA 94025, USA
4  Department of Physics, University of California, Santa Barbara, CA 93106, USA

(Received 18 October 2007 / Accepted 7 January 2008)

Aims.We determine the central mass distribution of galaxy cluster RX J1347-1145 using strong gravitational lensing.
Methods.High-resolution HST/ACS images of the galaxy cluster RX J1347-1145 have enabled us to identify several new multiple-image candidates in the cluster, including a 5-image system with a central image. The multiple-images allow us to construct an accurate 2-dimensional mass map of the central part of the cluster. The modelling of the cluster mass includes the most prominent cluster galaxies modelled as truncated isothermal spheres and a smooth halo component that is described with 2 parametric profiles. The mass reconstruction is done using a Markov chain Monte Carlo method that provides us with a total projected mass density, as well as with estimates for the parameters of interest and their respective errors.
Results.Inside the Einstein radius of the cluster (~35'', or ~200 kpc, for a source at redshift 1.8), we obtain a total mass of (2.6 $\pm$ 0.1) $\times$ 10 $^{14}~M_{\odot}$. The mass profile of the cluster is well-fitted by both a Navarro, Frenk, and White profile with a moderate concentration of c = 5.3 +0.4-0.6 and r200 = 3.3 +0.2-0.1 Mpc, and a non-singular isothermal sphere with velocity dispersion $\sigma$ = 1949 $\pm$ 40 km s-1 and a core radius of $r_{\rm c}$ = 20 $\pm$ 2''. The mass profile agrees with previous mass estimates based on the X-ray emission from the hot intra-cluster gas, although the X-ray mass estimates are systematically lower than what we obtain with gravitational lensing.

Key words: gravitational lensing -- galaxies: clusters: individual: RX J1347-1145 -- galaxies: clusters: general -- cosmology: dark matter

© ESO 2008

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.