EDP Sciences
AMBER: Instrument description and first astrophysical results
Press Release
Free Access
Volume 464, Number 1, March II 2007
AMBER: Instrument description and first astrophysical results
Page(s) 13 - 27
DOI https://doi.org/10.1051/0004-6361:20065432

A&A 464, 13-27 (2007)
DOI: 10.1051/0004-6361:20065432

Optical configuration and analysis of the AMBER/VLTI instrument

S. Robbe-Dubois1, S. Lagarde2, R. G. Petrov1, F. Lisi3, U. Beckmann4, P. Antonelli2, Y. Bresson2, G. Martinot-Lagarde2, 5, A. Roussel2, P. Salinari3, M. Vannier1, 6, 7, A. Chelli8, M. Dugué2, G. Duvert8, S. Gennari3, L. Glück8, P. Kern8, E. Le Coarer8, F. Malbet8, F. Millour1, 8, K. Perraut8, P. Puget8, F. Rantakyrö6, E. Tatulli8, G. Weigelt4, G. Zins8, M. Accardo3, B. Acke8, 9, K. Agabi1, E. Altariba8, B. Arezki8, E. Aristidi1, C. Baffa3, J. Behrend4, T. Blöcker4, S. Bonhomme2, S. Busoni3, F. Cassaing10, J.-M. Clausse2, J. Colin2, C. Connot4, L. Delage11, A. Delboulbé8, A. Domiciano de Souza1, 2, T. Driebe4, P. Feautrier8, D. Ferruzzi3, T. Forveille8, E. Fossat1, R. Foy12, D. Fraix-Burnet8, A. Gallardo8, E. Giani3, C. Gil8, 13, A. Glentzlin2, M. Heiden4, M. Heininger4, O. Hernandez Utrera8, K.-H. Hofmann4, D. Kamm2, M. Kiekebusch6, S. Kraus4, D. Le Contel2, J.-M. Le Contel2, T. Lesourd5, B. Lopez2, M. Lopez5, Y. Magnard8, A. Marconi3, G. Mars2, P. Mathias2, P. Mège8, J.-L. Monin8, D. Mouillet8, 14, D. Mourard2, E. Nussbaum4, K. Ohnaka4, J. Pacheco2, C. Perrier8, Y. Rabbia2, S. Rebattu2, F. Reynaud11, A. Richichi15, A. Robini1, M. Sacchettini8, D. Schertl4, M. Schöller6, W. Solscheid4, A. Spang2, P. Stee2, P. Stefanini3, M. Tallon12, I. Tallon-Bosc12, D. Tasso2, L. Testi3, F. Vakili1, O. von der Lühe16, J.-C. Valtier2, and N. Ventura8

1  Laboratoire Universitaire d'Astrophysique de Nice, UMR 6525 Université de Nice - Sophia Antipolis/CNRS, Parc Valrose, 06108 Nice Cedex 2, France
    e-mail: robbe@unice.fr
2  Laboratoire Gemini, UMR 6203 Observatoire de la Côte d'Azur/CNRS, BP 4229, 06304 Nice Cedex 4, France
3  INAF-Osservatorio Astrofisico di Arcetri, Istituto Nazionale di Astrofisica, Largo E. Fermi 5, 50125 Firenze, Italy
4  Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
5  Division Technique INSU/CNRS UPS 855, 1 place Aristide Briand, 92195 Meudon cedex, France
6  European Southern Observatory, Casilla 19001, Santiago 19, Chile
7  Departamento de Astronomia, Universidad de Chile, Chile
8  Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France
9  Instituut voor Sterrenkunde, KU-Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
10  ONERA/DOTA, 29 av de la Division Leclerc, BP 72, 92322 Chatillon cedex, France
11  IRCOM, UMR 6615 Université de Limoges/CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
12  Centre de Recherche Astronomique de Lyon, UMR 5574 Université Claude Bernard/CNRS, 9 avenue Charles André, 69561 Saint Genis Laval Cedex, France
13  Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
14  Laboratoire Astrophysique de Toulouse, UMR 5572 Université Paul Sabatier/CNRS, BP 826, 65008 Tarbes Cedex, France
15  European Southern Observatory, Karl Schwarzschild Strasse 2, 85748 Garching, Germany
16  Kiepenheuer Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany

(Received 13 April 2006 / Accepted 28 August 2006 )

Aims.This paper describes the design goals and engineering efforts that led to the realization of AMBER (Astronomical Multi BEam combineR) and to the achievement of its present performance.
Methods.On the basis of the general instrumental concept, AMBER was decomposed into modules whose functions and detailed characteristics are given. Emphasis is put on the spatial filtering system, a key element of the instrument. We established a budget for transmission and contrast degradation through the different modules, and made the detailed optical design. The latter confirmed the overall performance of the instrument and defined the exact implementation of the AMBER optics.
Results.The performance was assessed with laboratory measurements and commissionings at the VLTI, in terms of spectral coverage and resolution, instrumental contrast higher than 0.80, minimum magnitude of 11 in K, absolute visibility accuracy of 1%, and differential phase stability of 10-3 rad over one minute.

Key words: instrumentation: high angular resolution -- instrumentation: interferometers -- methods: analytical -- methods: numerical -- methods: laboratory -- techniques: high angular resolution

© ESO 2007

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.