We have also analyzed the degradation of the signal in the spectra, caused by different
types of flat-fields and by the background.
Table 3 clearly shows that an averaging of only 7 background images G suppressed
the noise in the mean background
significantly.
On the other hand no significant difference of the standard deviation is seen in all
flat field frames but they all have smaller noise than the raw spectrum P due to their
"flat'' character.
The contribution of the different components of the flat-field matrix M to the noise of
the original raw spectrum P is documented by the last four columns of the Table 3.
The "hard'' part M1,4,5 is more significant in this way (
)
than the
"soft'' part M2,3 with a standard deviation of 1.44
.
More, the main contributor to the noise of the
flat-field matrix M1,4,5 is the slit-flat M5 as can be seen
in the two last columns of the Table 3.
The standard deviation of M5 is roughly two times higher compared to the pixel
and camera flats M1,4.
This clearly documents that the slit-flat M5 plays an important role in the
flat-fielding of the solar spectra.
b) spectral characteristics
Spectral characteristics determined from spectra reduced with different accuracy
exhibit significant differences.
The widely used simple approach of reduction, produced fully insufficient accuracy
of the results.
The most influenced were the central parts of the spectral lines as a consequence of
applying of an incorrect flat-field matrix M2,3 i.e. the illumination-flat and
shutter-flat (see Fig. 4a).
Significant errors for line centre intensities
and for full width at half
of line maxima FWHM are documented in this case.
Only a small fraction of the data has accuracy better than 3% (see the part of 400-600 pixel in Figs. 10a,b).
The relative errors of the rest of the data fluctuate by up to 10%.
The humps of data in these two panels are caused by insufficient correction of the curvature
of the spectral lines in the simple reduction.
Only the central parts of the image are sufficiently corrected using the flat-field
matrix M2,3 (cf. Fig. 4).
Then the difference between the correct data derived from precise reduction and the
data resulting from the simple reduction shows humps.
![]() |
Figure 10:
The relative differences
![]() ![]() ![]() ![]() |
![]() |
Figure 11:
Absolute differences of line centre shifts
![]() |
![]() |
Figure 12: Absolute differences of bisectors Bi expressed in m s-1, calculated using the Eq. (15). a) Difference between precise and simple flat-fielding; b) difference between precise and extended flat-fielding. The panels from the top represent calculations for bisectors determined at 0.2, 0.4 and 0.6 of the line intensity respectively. |
The differences of line centre Doppler shifts
are also significant.
They exceeded 200 m s-1 (cf. Fig. 11a). The
measured in
the precisely reduced spectrum reached
1 km s-1.
Thus a velocity of 200 m s-1 represents an error of
20%.
Similar results were found for bisectors (cf. Figs. 12a-c).
The extended reduction improved the results slightly but still not sufficiently.
The relative differences of
as well as of
(cf. Figs. 11d,e)
remain under 1% except those cases when the intensity of the original raw spectrum was
reduced by dust particles on the slit.
In this case the relative differences of
as well as of
exceeded 2% and some "spikes'' reached 5% and more.
Almost identical values of FWHM resulting from the extended and from the precise reductions were found. The differences of the FWHM were less than 0.2%. Only a few values exceeded 0.5%, again at those positions where the wires imposed by dust on the slit appeared in the original raw spectrum.
Similarly to the FWHM case, the line centre Doppler shifts
were also
not very sensitive to the temporal changes of the flat-field conditions.
The differences of
were smaller than 3 m s-1 and only a few values reached 10 m s-1 (cf. Figs. 12d-f).
The relative errors of this data are of 0.3%-1.0%.
The small sensitivity of the FWHM and
to the change of flat-field
conditions can be explained by the fact that the shift of the slit-flat M5
did not significantly change the position and the shape of the particular line profile
but it mostly changed the intensity of the line and of the continuum.
This fact is also documented by the differences of bisectors which gradually
increased at higher intensities of the spectral line (cf. Figs. 12d-f).
The differences of bisectors at a line intensity 0.2 were smaller than 2 m s-1 and gradually
increased up to 10 m s-1 for bisectors calculated at line intensity of 0.8 (not shown in figure).
The relative errors in all these cases fluctuated between 0.2%-1.0%.
In the case of the simple reduction, the accuracy of the determination of the bisectors increased gradually when the bisectors were calculated for higher positions of line intensity. An opposite trend in the case of the extended reduction was found, but the accuracy of this approach was still one and half times better than in the simple reduction.
Copyright ESO 2002