next previous
Up: Temporal and spectral gamma-ray


Subsections

   
Appendix B: More on Mkn 421 spectra


 

 
Table B.1: Mkn 421 available statistics.
  1998 2000 (except 4-5/02) 4-5/02/2000
  $\scriptstyle{T_{{\rm ON}}\,=\,6.2\:{\rm h}}$ $\scriptstyle{\theta_{\rm z}\,\in\,[0^\circ;28^\circ]}$ $\scriptstyle{T_{{\rm ON}}\,=\,8.4\:{\rm h}}$ $\scriptstyle{\theta_{\rm z}\,\in\,[0^\circ;28^\circ]}$ $\scriptstyle{T_{{\rm ON}}\,=\,3.5\:{\rm h}}$ $\scriptstyle{\theta_{\rm z}\,\in\,[0^\circ;28^\circ]}$
  $\scriptstyle{T_{{\rm OFF}}\,=\,9.5\:{\rm h}}$ $\scriptstyle{S_\gamma\,=\,735\,\pm\,57}$ $\scriptstyle{T_{{\rm OFF}}\,=\,16.7\:{\rm h}}$ $\scriptstyle{S_\gamma\,=\,1424\,\pm\,71}$ $\scriptstyle{T_{{\rm OFF}}\,=\,17.6\:{\rm h}}$ $\scriptstyle{S_\gamma\,=\,609\,\pm\,40}$
$\scriptstyle{\Delta_{i_{\rm e}}}$ $\scriptstyle{n_{i_{\rm e}}}$ $\scriptstyle{p_{i_{\rm e}}}$ $\scriptstyle{S_{i_{\rm e}}}$ $\scriptstyle{\delta S_{i_{\rm e}}}$ $\scriptstyle{{N_\sigma}_{i_{\rm e}}}$ $\scriptstyle{n_{i_{\rm e}}}$ $\scriptstyle{p_{i_{\rm e}}}$ $\scriptstyle{S_{i_{\rm e}}}$ $\scriptstyle{\delta S_{i_{\rm e}}}$ $\scriptstyle{{N_\sigma}_{i_{\rm e}}}$ $\scriptstyle{n_{i_{\rm e}}}$ $\scriptstyle{p_{i_{\rm e}}}$ $\scriptstyle{S_{i_{\rm e}}}$ $\scriptstyle{\delta S_{i_{\rm e}}}$ $\scriptstyle{{N_\sigma}_{i_{\rm e}}}$
$\scriptstyle{0.3}-\scriptstyle{0.5}$ $\scriptstyle{615}$ $\scriptstyle{445}$ $\scriptstyle{170}$ $\scriptstyle{29}$ $\scriptstyle{5.8}$ $\scriptstyle{1351}$ $\scriptstyle{993}$ $\scriptstyle{358}$ $\scriptstyle{44}$ $\scriptstyle{ 8.2}$ $\scriptstyle{464}$ $\scriptstyle{318}$ $\scriptstyle{146}$ $\scriptstyle{23}$ $\scriptstyle{ 6.4}$
$\scriptstyle{0.5}-\scriptstyle{0.8}$ $\scriptstyle{790}$ $\scriptstyle{536}$ $\scriptstyle{254}$ $\scriptstyle{35}$ $\scriptstyle{7.3}$ $\scriptstyle{1267}$ $\scriptstyle{731}$ $\scriptstyle{536}$ $\scriptstyle{41}$ $\scriptstyle{13.1}$ $\scriptstyle{561}$ $\scriptstyle{300}$ $\scriptstyle{261}$ $\scriptstyle{25}$ $\scriptstyle{10.4}$
$\scriptstyle{0.8}-\scriptstyle{1.3}$ $\scriptstyle{452}$ $\scriptstyle{301}$ $\scriptstyle{151}$ $\scriptstyle{26}$ $\scriptstyle{5.7}$ $\scriptstyle{ 690}$ $\scriptstyle{411}$ $\scriptstyle{279}$ $\scriptstyle{30}$ $\scriptstyle{ 9.2}$ $\scriptstyle{300}$ $\scriptstyle{172}$ $\scriptstyle{128}$ $\scriptstyle{18}$ $\scriptstyle{ 7.0}$
$\scriptstyle{1.3}-\scriptstyle{2.0}$ $\scriptstyle{229}$ $\scriptstyle{123}$ $\scriptstyle{107}$ $\scriptstyle{18}$ $\scriptstyle{5.9}$ $\scriptstyle{ 335}$ $\scriptstyle{158}$ $\scriptstyle{175}$ $\scriptstyle{21}$ $\scriptstyle{ 8.6}$ $\scriptstyle{138}$ $\scriptstyle{ 64}$ $\scriptstyle{ 74}$ $\scriptstyle{12}$ $\scriptstyle{ 6.0}$
$\scriptstyle{2.0}-\scriptstyle{5.0}$ $\scriptstyle{119}$ $\scriptstyle{ 66}$ $\scriptstyle{ 53}$ $\scriptstyle{13}$ $\scriptstyle{4.0}$ $\scriptstyle{ 165}$ $\scriptstyle{ 89}$ $\scriptstyle{ 76}$ $\scriptstyle{15}$ $\scriptstyle{ 5.1}$ $\scriptstyle{-}$ $\scriptstyle{-}$ $\scriptstyle{-}$ $\scriptstyle{-}$ $\scriptstyle{-}$



 

 
Table B.2: Covariance matrices elements of Mkn 421 spectra.
Period $\scriptstyle{V_{\phi\phi}^{\rm pl}}$ $\scriptstyle{V_{\phi\gamma}^{\rm pl}}$ $\scriptstyle{V_{\gamma\gamma}^{\rm pl}}$ $\scriptstyle{V_{\phi\phi}^{\rm cs}}$ $\scriptstyle{V_{\phi\gamma}^{\rm cs}}$ $\scriptstyle{V_{\phi\beta}^{\rm cs}}$ $\scriptstyle{V_{\gamma\gamma}^{\rm cs}}$ $\scriptstyle{V_{\gamma\beta}^{\rm cs}}$ $\scriptstyle{V_{\beta\beta}^{\rm cs}}$
$\scriptstyle{1998}$ $\scriptstyle{3.97\,\times\,10^{-2}}$ $\scriptstyle{-1.24\,\times\,10^{-2}}$ $\scriptstyle{1.44\,\times\,10^{-2}}$ $\scriptstyle{1.03\,\times\, 10^{-1}}$ $\scriptstyle{-1.10\,\times\, 10^{-2}}$ $\scriptstyle{1.13\,\times\, 10^{-1}}$ $\scriptstyle{2.35\,\times\, 10^{-2}}$ $\scriptstyle{3.28\,\times\, 10^{-2}}$ $\scriptstyle{2.35\,\times\, 10^{-1}}$
$\scriptstyle{2000}$ $\scriptstyle{3.19\,\times\, 10^{-2}}$ $\scriptstyle{-8.65\,\times\, 10^{-3}}$ $\scriptstyle{6.51\,\times\, 10^{-3}}$ $\scriptstyle{7.80\,\times\, 10^{-2}}$ $\scriptstyle{-8.36\,\times\, 10^{-4}}$ $\scriptstyle{6.45\,\times\, 10^{-2}}$ $\scriptstyle{1.68\,\times\, 10^{-2}}$ $\scriptstyle{2.91\,\times\, 10^{-2}}$ $\scriptstyle{1.36\,\times\, 10^{-1}}$
$\scriptstyle{4-5/02/2000}$ $\scriptstyle{1.12\,\times\, 10^{-1}}$ $\scriptstyle{-3.84\,\times\, 10^{-2}}$ $\scriptstyle{2.16\,\times\, 10^{-2}}$ $\scriptstyle{1.38\,\times\, 10^{-1}}$ $\scriptstyle{-3.45\,\times\, 10^{-2}}$ $\scriptstyle{3.63\,\times\, 10^{-2}}$ $\scriptstyle{1.53\,\times\, 10^{-1}}$ $\scriptstyle{2.86\,\times\, 10^{-1}}$ $\scriptstyle{6.57\,\times\, 10^{-1}}$


   
Appendix B.1: Available statistics

The statistics used for extracting the Mkn 421 spectra are given in Table B.1. With the same notations used in this paper, we write:

   
Appendix B.2: Covariance matrices

Let $V^{\rm pl}$ and $V^{\rm cs}$ be the two covariance matrices of spectral parameters for the $\mathcal{H}^{\rm pl}$ and $\mathcal{H}^{\rm cs}$ hypotheses (see Sect. 2.3), respectively:

\begin{displaymath}V^{\rm pl}=\left(\begin{array}{cc}
V_{\phi\phi}^{\rm pl}&V_{\...
...\beta}^{\rm cs}&V_{\beta\beta}^{\rm cs}\\
\end{array}\right).
\end{displaymath}

The values of these matrices elements are given in Table B.2 for each spectrum of Mkn 421 obtained in this paper.

In the power-law hypothesis, the energy $E_{\rm d}$ at which the values of $\phi_0^{\rm pl}$ et $\gamma^{\rm pl}$ are decorrelated writes:

\begin{displaymath}E_{\rm d}=\exp\left[\frac{V_{\phi\gamma}^{\rm pl}}{\phi_0^{\rm pl}V_{\gamma\gamma}^{\rm pl}}\right]\:{\rm TeV}.
\end{displaymath}

At this decorrelation energy, the width of the hatched area representing the 68% confidence level contour, is minimum: for instance, we find $E_{\rm d}=690~{\rm GeV}$ for the 1998 time-averaged spectrum of Mkn 421 shown in Sect. 3.2.

In the curved shape hypothesis, the energy-dependent exponent $\gamma^{\rm cs}_l(E_{{\rm TeV}})=\gamma^{\rm cs}+\beta^{\rm cs}\log_{10}E_{{\rm TeV}}$ has a minimal error at the energy $\displaystyle E^{\rm cs}_0=10^{\frac{-V_{\gamma\beta}^{\rm cs}}{V_{\beta\beta}^{\rm cs}}}\:{\rm TeV}$; the corresponding value of $\gamma^{\rm cs}_l$ writes

\begin{displaymath}\gamma^{\rm cs}_0\equiv\gamma^{\rm cs}_l(E^{\rm cs}_0)=\gamma...
...m cs}\frac{V_{\gamma\beta}^{\rm cs}}{V_{\beta\beta}^{\rm cs}},
\end{displaymath}

and its error

\begin{displaymath}\delta\gamma^{\rm cs}_0\equiv\delta\gamma^{\rm cs}_l(E^{\rm c...
...c{{V_{\gamma\beta}^{\rm cs}}^2}{V_{\beta\beta}^{\rm cs}}}\cdot
\end{displaymath}


next previous
Up: Temporal and spectral gamma-ray

Copyright ESO 2001