next previous
Up: Temporal and spectral gamma-ray


Subsections

Appendix A: Spectra and light curve extraction

   
Appendix A.1: The spectral analysis procedure

Here we give the expression of the likelihood function $\mathcal{L}$ used for spectral reconstruction, using the same notations as in Sect. 2.3. We start with an assumption on the spectral shape by choosing a given law ${\left(\frac{{\rm d}\phi}{{\rm d}E}\right)}^{{\rm pred}}$, which includes the set $\{\Lambda\}$ of parameters to fit. Then, for each 2D-bin $\displaystyle\Delta_{i_{\rm z}, i_{\rm e}}$, corresponding to the zenith angle interval $[\theta^{{\rm min}}_{i_{\rm z}}, \theta^{{\rm max}}_{i_{\rm z}}]$ and to the estimated energy interval $[\widetilde{E}^{{\rm min}}_{i_{\rm e}}, \widetilde{E}^{{\rm max}}_{i_{\rm e}}]$, let us define: The observed numbers $n_{i_{\rm z}, i_{\rm e}}$ and $p_{i_{\rm z}, i_{\rm e}}$ have Poissonian probability distributions $\mathcal{P}(n_{i_{\rm z}, i_{\rm e}})$ and $\mathcal{P}(p_{i_{\rm z}, i_{\rm e}})$, respectively, and the likelihood function is as follows:

 \begin{displaymath}\displaystyle\mathcal{L}\left(\{\Lambda\}, \{\overline{p_{i_{...
...{i_{\rm z}, i_{\rm e}})
\mathcal{P}(p_{i_{\rm z}, i_{\rm e}}).
\end{displaymath} (A.2)

The quantities $\overline{p_{i_{\rm z}, i_{\rm e}}}$, which are unknown, can be determined by maximizing the function $\mathcal{L}$: the relations $\displaystyle\frac{\partial\log(\mathcal{L})}{\partial \overline{p_{i_{\rm z}, i_{\rm e}}}}$$\equiv$0 lead to the solutions $\displaystyle\overline{p_{i_{\rm z}, i_{\rm e}}}=\frac{1}{2\beta_{i_{\rm z}}(\b...
...\rm z}}+1)p_{i_{\rm z}, i_{\rm e}}S_{i_{\rm z}, i_{\rm e}}^{{\rm pred}}}\right]$, with $\displaystyle a_{i_{\rm z}, i_{\rm e}}=\beta_{i_{\rm z}}(n_{i_{\rm z}, i_{\rm e...
..._{\rm z}, i_{\rm e}})-(\beta_{i_{\rm z}}+1)S_{i_{\rm z},i_{\rm e}}^{{\rm pred}}$.

Finally, we reinject these expressions in Eq. (A.2), eliminate the "constant'' terms which only depend on $n_{i_{\rm z}, i_{\rm e}}$ or $p_{i_{\rm z}, i_{\rm e}}$, and get:

 
  $\textstyle \log\left[\mathcal{L}\left(\{\Lambda\}\right)\right]=\sum_{i_{\rm z}...
...\rm e}}^{{\rm pred}}+\beta_{i_{\rm z}}\overline{p_{i_{\rm z},i_{\rm e}}}\right)$    
  $\textstyle +\;\;\;p_{i_{\rm z}, i_{\rm e}}\log\left(\overline{p_{i_{\rm z}, i_{...
...\overline{p_{i_{\rm z}, i_{\rm e}}}-S_{i_{\rm z}, i_{\rm e}}^{{\rm pred}}\Big].$   (A.3)

The $\{\Lambda\}$ parameters, included in this expression through Eq. (A.1), are the only unknown quantities left: their values are determined using an iterative procedure of maximization, which leads to the final fitted values and their covariance matrix V.

   
Appendix A.2: Integral flux determination

When computing an integral flux, one must again take care of the telescope detection threshold increase with zenith angle $\theta_{\rm z}$; thus, let us denote: To convert $S^{\rm int}$ into the corresponding integral flux $\Phi$ above $250\:{\rm GeV}$, we use the following proportionality relation:

\begin{displaymath}\displaystyle\Phi=\frac{S^{\rm int}}{S^{{\rm int},\;{\rm best...
...\left(\frac{{\rm d}\phi}{{\rm d}E}\right)}^{\rm best}{\rm d}E,
\end{displaymath}

where ${\left(\frac{{\rm d}\phi}{{\rm d}E}\right)}^{\rm best}$ is the source differential spectrum measured as explained in Sect. 2.3, and $S^{{\rm int},\;{\rm best}}$ is the number of $\gamma $-ray events predicted from this law above $\widetilde{E}^{\rm int}[\theta_{\rm z}]$:

\begin{eqnarray*}\displaystyle S^{{\rm int},\;{\rm best}}&=&T_{{\rm ON}}\:{\int}...
..._{\rm z},E)\:\Upsilon(\theta_{\rm z},E\rightarrow\widetilde{E}).
\end{eqnarray*}


Finally, the error on $\Phi$ is simply estimated as $\displaystyle\delta\Phi$ = $\frac{\delta S^{\rm int}}{S^{\rm int}}\times\Phi$ .


next previous
Up: Temporal and spectral gamma-ray

Copyright ESO 2001