next previous
Up: Impacts of a power-law


Subsections

  
Appendix A: Ionization rates

  
A.1 Direct ionization (DI)

For the direct ionization (DI) cross sections we chose the fitting formula proposed by Arnaud & Rothenflug (1985) from the work of Younger (1981):

 
$\displaystyle %
\sigma_{\rm _{\rm DI}}(E)$ =$\displaystyle \sum_{j}\frac{1}{u_j I_j^{2}}\left[A_jU_j{+}
B_j U_j^{2} {+}C_j \,\ln(u_j)+D_j\frac{\ln(u_j)}{u_j}\right]$      $\displaystyle {\rm with}~~u_j=\frac{E}{I_j}~; ~~~U_j=1-\frac{1}{u_j}\cdot$ (A.1)

The sum is performed over the subshells j of the ionizing ion. E is the incident electron energy and Ij is the collisional ionization potential for the level j considered.

The parameters Aj, Bj, Cj, Dj (in units of 10-14cm2eV2) and Ij (in eV) are taken from the works of Arnaud & Raymond (1992) for iron, and of Arnaud & Rothenflug (1985) for the others elements. The parameters for elements not considered in these works are given in Mazzotta et al. (1998).

A.1.1 The Maxwellian electron distribution

For a Maxwellian electron distribution, Arnaud & Rothenflug (1985) obtained according to Eqs. (2), (8) and (A.1), the rate:

 \begin{displaymath}%
C_{\rm _{\rm DI}}^{\rm M}(T)=\frac{6.692\times 10^{7}}{(kT)...
...-x_j}}{x_j} F^{\rm M}_{\rm _{\rm DI}}(x_j)~~~{\rm
cm^3~s^{-1}}
\end{displaymath} (A.2)

where
$\displaystyle %
x_j =\frac{I_j}{kT}$     (A.3)


 
$\displaystyle F^{\rm M}_{\rm _{\rm DI}}(x_j)= A_j~[1-x_j f_{1}(x_j)]+B_j~[1+x_j -x_j(2+x_j)f_1(x_j)]+C_j~f_1(x_j)+D_j~x_j f_2(x_j)$     (A.4)

where kT and Ij are in eV. The summation is performed over the subshells j of the ionizing ion. The mathematical functions, $f_1(x)={\rm e}^x \int_{1}^{\infty} \frac{{\rm e}^{-tx}}{t}~{\rm d}t$, and $f_2(x)
={\rm e}^x \int_{1}^{\infty} \frac{{\rm e}^{-tx}}{t}~\ln (t)~{\rm d}t$ can be computed from the analytical approximations given by Arnaud & Rothenflug (1985) in their Appendix B.

A.1.2 The Hybrid electron distribution

Similar to the Hybrid electron distribution, the direct ionization rate $C_{\rm _{\rm DI}}^{\rm H}(T,x_{\rm b},\alpha)$ is given by:

 
$\displaystyle %
C_{\rm _{\rm DI}}^{\rm H}(T,x_{\rm b},\alpha)=C(x_{\rm b},\alph...
...} \sum_{j}G^{\rm H}_{\rm _{\rm DI}}(x_j,x_{\rm b}, \alpha)~~~{\rm cm^3~s^{-1}}.$     (A.5)

The function $G^{\rm H}_{\rm _{\rm DI}}(x_j,x_{\rm b}, \alpha)$ depends on the position of the power-law break energy as compared to the ionization potential:

  
A.2 Excitation autoionization (EA)

For the excitation autoionization (EA) cross sections, we used the generalized formula proposed by Arnaud & Raymond (1992):

 
$\displaystyle %
\sigma_{\rm _{\rm EA}}(E)$ = $\displaystyle \frac{1}{u I_{\rm _{\rm EA}}}\left[A+B~U+C~U_{2}+D~U_{3}+E~\ln(u)\right]$  
    $\displaystyle {\rm with}~~u=\frac{E}{I_{\rm _{\rm EA}}}~; ~~~~U_{n}=1-\frac{1}{u^n}$ (A.12)

where $I_{\rm _{\rm EA}}$ is the excitation autoionization threshold and E is the incident electron energy.

The parameters A, B, C, D, E (in units of 10-16cm2eV) and $I_{\rm _{\rm EA}}$ (in eV) are taken from the works of Arnaud & Rothenflug (1985) and Arnaud & Raymond (1992). The parameters for elements not considered in these works are given in Mazzotta et al. (1998).

A.2.1 The Maxwellian electron distribution

The excitation autoionization rate for a Maxwellian distribution is:
 
$\displaystyle %
C_{\rm _{\rm EA}}^{\rm M}(T)$ = $\displaystyle \frac{6.692 \times
10^{7}~{\rm e}^{-x_{\rm _{\rm EA}}}}{(kT)^{1/2}}~ F^{\rm M}_{\rm _{\rm EA}}(x_{\rm _{\rm EA}})~~~{\rm {cm}^3\,s^{-1}}$ (A.13)

where
 
$\displaystyle %
x_{\rm _{\rm EA}}$ = $\displaystyle \frac{I_{\rm _{\rm EA}}}{kT}$ (A.14)
$\displaystyle F^{\rm M}_{\rm _{\rm EA}}(x_{\rm _{\rm EA}})$ = $\displaystyle A+B[1-x_{\rm _{\rm EA}}f_1(x_{\rm _{\rm EA}})]+C[1-x_{\rm _{\rm EA}}+x_{\rm _{\rm EA}}^{2} f_1(x_{\rm _{\rm EA}})]$ (A.15)
    $\displaystyle +D\left[1-\frac{x_{\rm _{\rm EA}}}{2}+\frac{x_{\rm _{\rm EA}}^{2}...
..._{\rm _{\rm EA}}^3}{2} f_1(x_{\rm _{\rm EA}})\right]+ E f_1(x_{\rm _{\rm EA}}).$  

A.2.2 The Hybrid electron distribution

For the Hybrid electron distribution, the excitation autoionization rate $C_{\rm _{\rm EA}}^{\rm H}(T,x_{\rm b},\alpha)$ is given by:

 
$\displaystyle %
C_{\rm _{\rm EA}}^{\rm H}(T,x_{\rm b},\alpha)=C(x_{\rm b},\alph...
..._{\rm _{\rm EA}}(x_{\rm _{\rm EA}},x_{\rm b}, \alpha)~~~~~~~~{\rm cm^3~s^{-1}}.$     (A.16)

The function $G^{\rm H}_{\rm _{\rm EA}}(x_{\rm _{\rm EA}},x_{\rm b}, \alpha)$ depends on the position of the power-law break energy as compared to the ionization potential:

A.3 Total ionization rates (DI + EA)

The total ionization rate $C_{\rm _{\rm I}}^{\rm H}(T,x_{\rm b},\alpha)$ is obtained by:

$\displaystyle %
C_{\rm _{\rm I}}^{\rm H}(T,x_{\rm b},\alpha)$ = $\displaystyle C_{\rm _{\rm DI}}^{\rm H}(T,x_{\rm b},\alpha)+C_{\rm _{\rm EA}}^{\rm H}(T,x_{\rm b},\alpha).$ (A.23)


next previous
Up: Impacts of a power-law

Copyright ESO 2001