EDP Sciences
Free access
Volume 491, Number 2, November IV 2008
Page(s) 597 - 615
Section Astronomical instrumentation
DOI http://dx.doi.org/10.1051/0004-6361:200810116
Published online 01 October 2008

A&A 491, 597-615 (2008)
DOI: 10.1051/0004-6361:200810116

Component separation methods for the PLANCK mission

S. M. Leach1, 2, J.-F. Cardoso3, 4, C. Baccigalupi1, 2, R. B. Barreiro5, M. Betoule3, J. Bobin6, A. Bonaldi7, 8, J. Delabrouille3, G. de Zotti1, 7, C. Dickinson9, H. K. Eriksen10, 11, J. González-Nuevo1, F. K. Hansen10, 11, D. Herranz5, M. Le Jeune3, M. López-Caniego12, E. Martínez-González5, M. Massardi1, J.-B. Melin13, M.-A. Miville-Deschênes14, G. Patanchon3, S. Prunet15, S. Ricciardi7, 16, E. Salerno17, J. L. Sanz5, J.-L. Starck6, F. Stivoli1, 2, V. Stolyarov12, R. Stompor3, and P. Vielva5

1  SISSA - ISAS, Astrophysics Sector, via Beirut 4, 34014 Trieste, Italy
    e-mail: leach@sissa.it
2  INFN, Sezione di Trieste, via Valerio 2, 34014 Trieste, Italy
3  CNRS & Université Paris 7, Laboratoire APC, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France
4  Laboratoire de Traitement et Communication de l'Information (CNRS and Telecom ParisTech), 46, rue Barrault, 75634 Paris, France
5  Instituto de Física de Cantabria (CSIC-UC), Avda. de los Castros s/n, 39005 Santander, Spain
CEA - Saclay, SEDI/Service d'Astrophysique, 91191 Gif-Sur-Yvette, France
INAF - Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122 Padova, Italy
Dipartimento di Astronomia, vicolo dell'Osservatorio 5, 35122 Padova, Italy
Infrared Processing and Analysis Center, California Institute of Technology, M/S 220-6, 1200 E. California Blvd, Pasadena, 91125, USA
Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
Centre of Mathematics for Applications, University of Oslo, PO Box 1053 Blindern, 0316 Oslo, Norway
Astrophysics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK
DSM/Irfu/SPP, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
Institut d'Astrophysique Spatiale, Bâtiment 121, 91405 Orsay, France
Institut d'Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris, France
Space Sciences Laboratory, University of California Berkeley, Computational Cosmology Center, Lawrence Berkeley National Laboratory, CA 94720, USA
Istituto di Scienza e Technologie dell'Informazione, CNR, Area della ricerca di Pisa, via G. Moruzzi 1, 56124 Pisa, Italy

Received 2 May 2008 / Accepted 17 September 2008

Context. The PLANCK satellite will map the full sky at nine frequencies from 30 to 857 GHz. The CMB intensity and polarization that are its prime targets are contaminated by foreground emission.
Aims. The goal of this paper is to compare proposed methods for separating CMB from foregrounds based on their different spectral and spatial characteristics, and to separate the foregrounds into “components” with different physical origins (Galactic synchrotron, free-free and dust emissions; extra-galactic and far-IR point sources; Sunyaev-Zeldovich effect, etc.).
Methods. A component separation challenge has been organised, based on a set of realistically complex simulations of sky emission. Several methods including those based on internal template subtraction, maximum entropy method, parametric method, spatial and harmonic cross correlation methods, and independent component analysis have been tested.
Results. Different methods proved to be effective in cleaning the CMB maps of foreground contamination, in reconstructing maps of diffuse Galactic emissions, and in detecting point sources and thermal Sunyaev-Zeldovich signals. The power spectrum of the residuals is, on the largest scales, four orders of magnitude lower than the input Galaxy power spectrum at the foreground minimum. The CMB power spectrum was accurately recovered up to the sixth acoustic peak. The point source detection limit reaches 100 mJy, and about 2300 clusters are detected via the thermal SZ effect on two thirds of the sky. We have found that no single method performs best for all scientific objectives.
Conclusions. We foresee that the final component separation pipeline for PLANCK will involve a combination of methods and iterations between processing steps targeted at different objectives such as diffuse component separation, spectral estimation, and compact source extraction.

Key words: cosmology: cosmic microwave background -- methods: data analysis

© ESO 2008

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.