EDP Sciences
Free Access
Issue
A&A
Volume 482, Number 3, May II 2008
Page(s) 755 - 769
Section Extragalactic astronomy
DOI https://doi.org/10.1051/0004-6361:20078688
Published online 04 March 2008


A&A 482, 755-769 (2008)
DOI: 10.1051/0004-6361:20078688

Magnetic fields and gas in the cluster-influenced spiral galaxy NGC 4254

II. Structures of magnetic fields
K. T. Chyzy

Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland
    e-mail: chris@oa.uj.edu.pl

(Received 17 September 2007 / Accepted 4 February 2008)

Abstract
Aims. The origin of asymmetric radio polarized emission in the Virgo Cluster spiral NGC 4254 is investigated and the influence of cluster environment on the properties of magnetic fields is explored.
Methods. Structures of magnetic fields are analyzed with the concept of "magnetic maps", presenting distributions of different magnetic field components (total, regular, and random) over the entire galaxy, free of Faraday rotation and projection effects. A number of different physical phenomena influencing the magnetic field are modeled analytically and confronted with the galaxy's depolarization pattern and distribution of magnetic field strength obtained from multifrequency polarimetric radio observations.
Results. The study of orientation of intrinsic magnetic field vectors in NGC 4254 indicates that their dramatic variation (from 0° to more than 40°) throughout the galaxy cannot arise from the dynamo process alone, but must be dominated by effects such as density waves and local gas flows. We determine within the galaxy the relation between the strength of total magnetic field and the local star-formation rate (SFR) as a power-law with an index of +0.18 $\pm$ 0.01. We find the opposite sense of the relation between magnetic field regularity and SFR (-0.32 $\pm$ 0.03), and suggest that it results from efficient production of random field with rising turbulence in the regions with actively-forming stars. The distribution of Faraday rotation measures in NGC 4254 indicates a perturbed axisymmetrical mean-field dynamo mode or a mixture of axisymmetrical and bisymmetrical ones with regular field directed outwards from the disk, which is contrary to most observed galaxies. The galaxy's northern magnetic arm, located on the upstream side of the local density wave, with regular field strength of about 8 $\mu$G and the total one of 17 $\mu$G, much resembles those observed in other galaxies. But the magnetic field within two outer arms (shifted downstream of a density wave) is much stronger, up to 13 $\mu$G in the regular field component and 20 $\mu$G in the total field. Our modeling of cluster influence on different magnetic field components indicates that within the outer magnetic arms the dynamo-induced magnetic fields are modified by stretching and shearing forces rather than by cluster ram pressure. Those forces, which are likely triggered by the galaxy's gravitational interaction, produce an anisotropic component of the regular field and enhance the polarized emission. We also show that the magnetic energy within the large interarm regions and the galaxy's outskirts exceeds the gas thermal and turbulent energy, likely becoming dynamically important.


Key words: galaxies: general -- ISM: magnetic fields -- galaxies: magnetic fields -- galaxies: interactions -- radio continuum: galaxies -- radio continuum: ISM



© ESO 2008

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.