EDP Sciences
Free Access
Volume 480, Number 2, March III 2008
Page(s) 515 - 526
Section The Sun
DOI https://doi.org/10.1051/0004-6361:20078642
Published online 17 January 2008

A&A 480, 515-526 (2008)
DOI: 10.1051/0004-6361:20078642

The solar chromosphere at high resolution with IBIS

I. New insights from the Ca II 854.2 nm line
G. Cauzzi1, K. P. Reardon1, H. Uitenbroek2, F. Cavallini1, A. Falchi1, R. Falciani3, K. Janssen1, T. Rimmele2, A. Vecchio1, and F. Wöger2, 4

1  INAF - Osservatorio Astrofisico di Arcetri, 50125 Firenze, Italy
    e-mail: gcauzzi@arcetri.astro.it
2  National Solar Observatory, PO Box 62, Sunspot NM 88349, USA
3  Dipartimento di Astronomia, Università di Firenze, 50125 Firenze, Italy
4  Kipenheuer Institute für Sonnenphysics, 79104 Freiburg, Germany

(Received 10 September 2007 / Accepted 30 November 2007)

Context.The chromosphere remains a poorly understood part of the solar atmosphere, as current modeling and observing capabilities are still ill-suited to investigating its fully 3-dimensional nature in depth. In particular, chromospheric observations that can preserve high spatial and temporal resolution while providing spectral information over extended fields of view are still very scarce.
Aims.In this paper, we seek to establish the suitability of imaging spectroscopy performed in the Ca II 854.2 nm line as a means of investigating the solar chromosphere at high resolution.
Methods.We utilize monochromatic images obtained with the Interferometric BIdimensional Spectrometer (IBIS) at multiple wavelengths within the Ca II 854.2 nm line and over several quiet areas. We analyze both the morphological properties derived from narrow-band monochromatic images and the average spectral properties of distinct solar features such as network points, internetwork areas, and fibrils.
Results.The spectral properties derived over quiet-Sun targets are in full agreement with earlier results obtained with fixed-slit spectrographic observations, highlighting the reliability of the spectral information obtained with IBIS. Furthermore, the very narrowband IBIS imaging reveals very clearly the dual nature of the Ca II 854.2 nm line. Its outer wings gradually sample the solar photosphere, while the core is a purely chromospheric indicator. The latter displays a wealth of fine structures including bright points akin to the Ca II H2V and K2V grains, and as fibrils originating from even the smallest magnetic elements. The fibrils occupy a large fraction of the observed field of view, even in the quiet regions, and clearly outline atmospheric volumes with different dynamical properties, strongly dependent on the local magnetic topology. This highlights how 1D models stratified along the vertical direction can provide only a very limited representation of the actual chromospheric physics.
Conclusions.Imaging spectroscopy in the Ca II 854.2 nm line currently represents one of the best observational tools for investigating the highly structured and highly dynamical chromospheric environment. A high-performance instrument such as IBIS is crucial in achieving the necessary spectral purity and stability, spatial resolution, and temporal cadence.

Key words: Sun: chromosphere -- Sun: magnetic fields -- instrumentation: high angular resolution -- instrumentation: interferometers

© ESO 2008

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.