EDP Sciences
Free access
Issue
A&A
Volume 479, Number 1, February III 2008
Page(s) 189 - 206
Section Stellar atmospheres
DOI http://dx.doi.org/10.1051/0004-6361:20078807


A&A 479, 189-206 (2008)
DOI: 10.1051/0004-6361:20078807

Chemical composition of A and F dwarf members of the Coma Berenices open cluster

M. Gebran, R. Monier, and O. Richard

Groupe de Recherche en Astronomie et Astrophysique du Languedoc, UMR 5024, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier, France
    e-mail: [gebran;richard]@graal.univ-montp2.fr, Richard.Monier@unice.fr

(Received 7 October 2007 / Accepted 25 October 2007)

Abstract
Aims.Abundances of 18 chemical elements have been derived for 11 A (normal and Am) and 11 F dwarfs members of the Coma Berenices open cluster in order to set constraints on evolutionary models including transport processes (radiative and turbulent diffusion) calculated with the Montréal code.
Methods.A spectral synthesis iterative procedure has been applied to derive the abundances from selected high quality lines in high resolution high signal-to-noise échelle spectra obtained with ELODIE at the Observatoire de Haute Provence.
Results.The chemical pattern found for the A and F dwarfs in Coma Berenices is reminiscent of that found in the Hyades and the UMa moving group. In graphs representing the abundances [X/H] versus the effective temperature, the A stars often display abundances much more scattered around their mean values than the F stars do. Large star-to-star variations are detected for A stars in their abundances of C, O, Na, Sc, Ti, Mn, Fe, Ni, Sr, Y, Zr and Ba which we interpret as evidence of transport processes competing with radiative diffusion. The abundances of Mn, Ni, Sr and Ba are strongly correlated with that of iron for A and Am stars. In contrast the ratios [C/Fe] and [O/Fe] appear to be anticorrelated with [Fe/H] as found earlier for field A dwarfs. All Am stars in Coma Berenices are deficient in C and O and overabundant in elements heavier than Fe but not all are deficient in calcium and/or scandium. The F stars have solar abundances for almost all elements except for Mg, Si, V and Ba. The derived abundances patterns, [X/H] versus atomic number, for the slow rotator HD 108642 (A2m) and the moderately fast rotator HD 106887 (A4m) were compared to the predictions of self consistent evolutionary model codes including radiative and different amounts of turbulent diffusion. None of the models reproduces entirely the overall shape of the abundance pattern.
Conclusions.While part of the discrepancies between derived and predicted abundances may be accounted for by non-LTE effects, the inclusion of competing processes such as rotational mixing in the radiative zones of these stars seems necessary to improve the agreement between observed and predicted abundance patterns.


Key words: stars: abundances -- stars: rotation -- diffusion -- Galaxy: open clusters and associations: individual: Coma Berenices -- stars: early-type



© ESO 2008

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.