EDP Sciences
Free Access
Volume 432, Number 3, March IV 2005
Page(s) 999 - 1012
Section Stellar structure and evolution
DOI https://doi.org/10.1051/0004-6361:20041288

A&A 432, 999-1012 (2005)
DOI: 10.1051/0004-6361:20041288

XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U 1700-37 at low flux

A. van der Meer1, L. Kaper1, T. Di Salvo1, M. Méndez2, M. van der Klis1, P. Barr3 and N. R. Trams3

1  Sterrenkundig Instituut "Anton Pannekoek" and Center for High-energy Astrophysics (CHEAF), University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
    e-mail: ameer@science.uva.nl
2  Space Research Organization of the Netherlands, National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
3  Integral Science Operations Centre, Astrophysics Div., Science Department, ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands

(Received 13 May 2004 / Accepted 24 November 2004 )

We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37 / HD 153919 , carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The lightcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase $\phi \sim 0.25$. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index ( $\alpha \sim 1.4$), but with different absorption columns. We show that during the low-flux interval the continuum is strongly reduced, probably due to a reduction of the accretion rate onto the compact object. A soft excess is detected in all spectra, consistent with either another continuum component originating in the outskirts of the system or a blend of emission lines. Many fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species are detected during eclipse and egress. The fluorescence Fe K$\alpha$ line at 6.4 keV is very prominent; a second K$\alpha$ line is detected at slightly higher energies (up to 6.7 keV) and a K$\beta$ line at 7.1 keV. In the low-flux interval the Fe K$\alpha$ line at 6.4 keV is strongly (factor $\sim $30) reduced in strength. In eclipse, the Fe K$\beta$/K$\alpha$ ratio is consistent with a value of 0.13. In egress we initially measure a higher ratio, which can be explained by a shift in energy of the Fe K-edge to ~7.15 keV, which is consistent with moderately ionised iron, rather than neutral iron, as expected for the stellar wind medium. The detection of recombination lines during eclipse indicates the presence of an extended ionised region surrounding the compact object. The observed increase in strength of some emission lines corresponding to higher values of the ionisation parameter $\xi$ further substantiates this conclusion.

Key words: stars: binaries: eclipsing -- stars: individual: 4U 1700-37 -- stars: individual: HD 153919 -- accretion, accretion disks -- scattering

SIMBAD Objects

© ESO 2005

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.