Issue |
A&A
Volume 400, Number 1, March II 2003
|
|
---|---|---|
Page(s) | 355 - 367 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361:20021887 | |
Published online | 24 February 2003 |
Solar coronal heating by relaxation events
1
Department of Physics, UMIST, Manchester, UK e-mail: Philippa.Browning@umist.ac.uk
2
Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium e-mail: Ronald.VanderLinden@oma.be
Corresponding author: P. K. Browning, Philippa.Browing@umist.ac.uk
Received:
11
November
2002
Accepted:
20
December
2002
A coronal heating model is proposed which predicts heating by a series of discrete events of various energies, analogous to the observed range of events from large scale flares through various transient brightening phenomena down to the often discussed “nanoflares”. We suggest that an energy release event occurs when a field becomes linearly unstable to ideal MHD modes, with dissipation during the nonlinear phase of such an instability due to reconnection in fine-scale structures such as current sheets. The energy release during this complex dynamic period can be evaluated by assuming the field relaxes to a minimum energy state subject to the constraint of helicity conservation. A model problem is studied: a cylindrical coronal loop, with a current profile generated by slow twisting of the photospheric footpoints parameterised by two values of α (the ratio of current density to field strength). Different initial α profiles, corresponding to different footpoint twisting profiles, lead to energy release events of a wide range of magnitudes, but our model predicts an observationally realistic minimum size for these events.
Key words: Sun: corona / Sun: magnetic fields / magnetohydrodynamics (MHD) / plasmas
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.