EDP Sciences
Free Access
Volume 375, Number 2, August IV 2001
Page(s) 566 - 578
Section Diffuse matter in space
DOI https://doi.org/10.1051/0004-6361:20010817
Published online 15 August 2001

A&A 375, 566-578 (2001)
DOI: 10.1051/0004-6361:20010817

Global physical conditions of the interstellar medium in nearby galaxies

T. Negishi1, T. Onaka1, K.-W. Chan1 and T. L. Roellig2

1  Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2  MS245-6, NASA Ames Research Center, Moffett Field, CA94035-1000, USA

(Received 20 April 2001 / Accepted 1 June 2001)

Far-infrared spectra (43-197 $\mu$m) of 34 nearby galaxies obtained by the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) were analyzed to investigate the general properties of interstellar matter in galaxies. The present sample includes not only normal galaxies but also starbursts and active galactic nuclei (AGNs). Far-infrared forbidden lines, such as [CII]158 $\mu$m, [OI]63 $\mu$m, [NII]122 $\mu$m, and [OIII]88 $\mu$m, were detected in most of the sample galaxies. [OI]145 $\mu$m line was detected in 13 galaxies. The line fluxes of [CII]158 $\mu$m and [NII]122 $\mu$m relative to the total far-infrared flux (FIR) decrease as the far-infrared color becomes bluer, while the ratio of the [OI]63 $\mu$m flux to FIR does not show a systematic trend with the color. The [OIII]88 $\mu$m to FIR ratio shows a large scatter with a weak trend of increase with the color. AGNs do not show any distinguishable trend from normal and starburst galaxies in the far-infrared spectra, suggesting that the far-infrared emission is mainly driven by star-formation activities even in AGNs. We estimate the physical conditions of photodissociation regions (PDRs) in the sample galaxies, such as the far-ultraviolet radiation field intensity G_ and the gas density n by assuming that all the observed [OI]63 $\mu$m and far-infrared continuum emissions come from PDRs. Comparison with PDR models indicates that G_ ranges from 102-104 and $n \sim 10^2$- 104 cm-3. The present results also suggest that n varies proportionally with G_. The ratio of [CII] 158 $\mu$m to CO (J=1-0) line emission supports the linear increase in n with G_. We estimate that about a half of [CII]158 $\mu$m emission originates from PDRs and attribute the rest to the emission as coming from low-density diffuse ionized gas. The estimated intensity of [CII]158 $\mu$m from the ionized gas is compatible with the observed intensity of [NII]122 $\mu$m if both lines come from the same diffuse ionized gas. The present analysis suggests that the decrease in [CII]158 $\mu$m $/{\it FIR}$ with the far-infrared color may not be accounted for by the decrease in the photoelectric heating efficiency owing to the increase in positive charges of dust grains because a measure of the efficiency, G/n, is found to stay constant with the far-infrared color. Instead the decrease can be interpreted in terms of either the increase in the collisional de-excitation of the [CII] transition due to the increase in the gas density or the decrease in the ionized component relative to the far-infrared intensity suggested by the decrease in [NII]122 $\mu$m $/{\it FIR}$. Based on the present analysis, we derive average relations of the far-infrared color with G_ and n in galaxies, which can be applied to the investigation of interstellar matter in distant galaxies.

Key words: galaxies: ISM -- infrared: ISM -- lines and bands: ISM -- radiation mechanisms: thermal

Offprint request: T. Onaka, onaka@astron.s.u-tokyo.ac.jp

SIMBAD Objects

© ESO 2001

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.