EDP Sciences
Free access
Volume 373, Number 1, July I 2001
Page(s) 318 - 328
Section The Sun
DOI http://dx.doi.org/10.1051/0004-6361:20010524

A&A 373, 318-328 (2001)
DOI: 10.1051/0004-6361:20010524

A nanoflare heating model for the quiet solar corona

U. Mitra-Kraev and A. O. Benz

Institute of Astronomy, ETH-Zentrum, 8092 Zürich, Switzerland
    e-mail: benz@astro.phys.ethz.ch; urmila@astro.phys.ethz.ch

(Received 29 January 2001 / Accepted 4 April 2001 )

The energy input into the lower solar corona by flare evaporation events has been modeled according to the available observations for quiet regions. The question is addressed whether such heating events can provide the observed average level of the coronal emission measure and thus of the observed flux of extreme ultraviolet (EUV) and X-ray emission without contradicting the observed average power spectrum of the emission measure, the typical emission measure variations observed for individual pixels and the observed flare energy distribution. As the assumed flare height influences the derived flare energy, the mathematical foundations of nanoflare distributions and their conversion to different height assumptions are studied first. This also allows a comparison with various published energy distributions differing in height assumptions and to relate the observations to the input parameters of the heating model. An analytic evaluation of the power spectrum yields the relationship between the average time profile of nanoflares (or microflares), assumed to be self-similar in energy, and the power spectrum. We find that the power spectrum is very sensitive to the chosen time profile of the flares. Models are found by numerical simulation that fit all available observations. They are not unique but severely constrained. We concentrate on a model with a flare height proportional to the square root of the flare area. The existence of a fitting model demonstrates that nanoflare heating of the corona is a viable and attractive mechanism.

Key words: Sun: corona -- Sun: flares -- Sun: transition region -- Sun: chromosphere -- Sun: UV radiation -- Sun: activity

Offprint request: A. O. Benz, benz@astro.phys.ethz.ch

© ESO 2001