Table 5: Spectral-fit parameters of the total-pulsed INTEGRAL, XMM-Newton, RXTE-PCA and RXTE-HEXTE fits (see Sect. 3.3.1).
INTEGRAL 20-270 keV
$\Gamma_{\rm {INTEGRAL}}$ $0.98 \pm 0.31$
$F_{20-150~\rm {keV}}$ $(2.53 \pm 0.40) \times 10^{-11}$
$\chi^2_{\rm r}$  (d.o.f.) 0.70 (5)
$F_{20-270~\rm {keV}}$ $(4.89 \pm 1.12) \times 10^{-11}$
XMM-Newton 0.5-2.8 keV$^\dagger$
$\Gamma_{\rm {\mbox{{\it XMM-Newton}}}}$ $2.89 \pm 0.06$
$F_{0~{\rm {\mbox{{\it XMM-Newton}}}}}$ $(1.95 \pm 0.07) \times 10^{-2}$
$\chi^2_{\rm r}$  (d.o.f.) 0.46 (7)
$F_{0.5-2~\rm {keV}}^\dagger$ $(4.69 \pm 0.24) \times 10^{-11}$
XMM-Newton 2.8-12 keV$^\dagger$
$\Gamma_{\rm {\mbox{{\it XMM-Newton}}}}$ $2.87 \pm 0.12$
$F_{0~{\rm {\mbox{{\it XMM-Newton}}}}}$ $(1.43 \pm 0.25) \times 10^{-2}$
$\chi^2_{\rm r}$  (d.o.f.) 0.39 (6)
$F_{2-10~\rm {keV}}^\dagger$ $(1.21 \pm 0.05) \times 10^{-11}$

RXTE-PCA+HEXTE+INTEGRAL 2.8-270 keV
$\Gamma_{\rm {s}}$ $2.79 \pm 0.07$
$F_{0~{\rm {s}}}$ $(1.34 \pm 0.11) \times 10^{-2}$
$\Gamma_{\rm {h}}$ $0.86 \pm 0.16$
$F_{{\rm {h}}, 20-150~\rm {keV}}$ $(2.40 \pm 0.32) \times 10^{-11}$
$\chi^2_{\rm r}$  (d.o.f.) 0.51 (22)
$F_{2-10~\rm {keV}}$ $(1.243 \pm 0.011) \times 10^{-11}$
$F_{10-20~\rm {keV}}$ $(0.333 \pm 0.010) \times 10^{-11}$
$F_{20-150~\rm {keV}}$ $(2.60 \pm 0.35) \times 10^{-11}$
$F_{20-270~\rm {keV}}$ $(5.16 \pm 1.06) \times 10^{-11}$
The $N_{{\rm H}}$ is fixed to $1.47
\times 10^{22}$ cm-2. The integrated fluxes are in units erg cm-2 s-1. F0 is the normalization at 1 keV in units ph cm-2 s-1keV-1. The subscripts s and h stand for ``soft'' and ``hard'' in the combined fit.
$^\dagger$ Model includes fixed parameters $\Gamma_{\rm {h}}$ and $F_{{\rm {h}}, 20-150~\rm {keV}}$ of the combined RXTE-INTEGRAL spectrum to correct for the contribution of the hard X-ray spectrum in the XMM-Newton band. The integrated flux is the model flux including the hard component.

Source LaTeX | All tables | In the text