Table 8: The dust properties at selected water line frequencies for four typical models. The column density $N_{\rm {H_2}}$ required to produce $\tau =1$ for the dust at each frequency is given with the corresponding radii and temperatures.
Transition Frequency $\kappa_{\rm OH5}$ $N_{\rm {H_2}}$ r and T ( $\tau_{\rm dust}=1$)
        Model 1c Model 2d Model 3e Model 4f
  GHz 10-2 cm2g-1a 1023 cm-2 AU  K AU K AU K AU K
Ortho-H2O transitions        
110-101 556 4.56 54.8 -b - - - - - - -
212-101 1669 32.7 7.6 45 97 62 73 9 188 - -
221-212 1661 32.3 7.2 48 92 63 72 10 179 - -
312-303 1097 17.3 14.5 - - 32 111 - - - -
312-212 1153 18.5 13.5 15 240 34 107 - - - -
321-312 1162 18.7 13.3 16 217 35 105 - - - -
Para-H2O transitions        
111-000 1113 17.7 14.1 - - 33 109 - - - -
202-111 987 14.4 17.3 - - 27 128 - - - -
211-202 752 8.45 29.5 - - 16 213 - - - -
220-211 1228 20.0 12.4 18 185 37 101 - - - -
331-404 1893 40.9 6.1 64 78 74 65 12 154 - -
422-331 916 12.2 20.4 - - 38 99 - - - -
422-413 1207 19.6 12.7 17 193 23 144 - - - -
524-431 970 13.9 17.9 - - 26 131 - - - -
a Total gas and dust; b - indicates that the dust is optically thin throughout the entire envelope; c see text, $L=7~L_\odot$, p=1.5, $n_0=5\times 10^6$ cm-3; d see text, $L=7~L_\odot$, p=2, $n_0=5\times 10^6$ cm-3; e see text, $L=2~L_{\odot}$, p=2, $n_0=4\times10^5$ cm-3; f see text, $L=25~L_{\odot}$, p=1.5, $n_0=1\times 10^6$ cm-3.


Source LaTeX | All tables | In the text